Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2008_262_a2, author = {S. M. Aseev and A. V. Kryazhimskii}, title = {On {a~Class} of {Optimal} {Control} {Problems} {Arising} in {Mathematical} {Economics}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {16--31}, publisher = {mathdoc}, volume = {262}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a2/} }
TY - JOUR AU - S. M. Aseev AU - A. V. Kryazhimskii TI - On a~Class of Optimal Control Problems Arising in Mathematical Economics JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 16 EP - 31 VL - 262 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2008_262_a2/ LA - ru ID - TM_2008_262_a2 ER -
S. M. Aseev; A. V. Kryazhimskii. On a~Class of Optimal Control Problems Arising in Mathematical Economics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 16-31. http://geodesic.mathdoc.fr/item/TM_2008_262_a2/
[1] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo upravleniya s funktsionalom, zadannym nesobstvennym integralom”, DAN, 394:5 (2004), 583–585 | MR | Zbl
[2] Aseev S. M., Kryazhimskii A. V., Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta, Tr. MIAN, 257, Nauka, M., 2007 | MR
[3] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | Zbl
[5] Arrow K. J., Kurz M., Public investment, the rate of return, and optimal fiscal policy, J. Hopkins Univ. Press, Baltimore, MD, 1970
[6] Aseev S. M., Kryazhimskiy A. V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control and Optim., 43 (2004), 1094–1119 | DOI | Zbl
[7] Aubin J.-P., Clarke F. H., “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control and Optim., 17 (1979), 567–586 | DOI | MR | Zbl
[8] Balder E. J., “An existence result for optimal economic growth problems”, J. Math. Anal. and Appl., 95 (1983), 195–213 | DOI | MR | Zbl
[9] Benveniste L. M., Scheinkman J. A., “Duality theory for dynamic optimization models of economics: the continuous time case”, J. Econ. Theory., 27 (1982), 1–19 | DOI | MR | Zbl
[10] Cesari L., Asymptotic behavior and stability problems in ordinary differential equations, Springer, Berlin, 1959 | MR | Zbl
[11] Clarke F. H., Optimization and nonsmooth analysis, J. Wiley, New York, 1983 | MR | Zbl
[12] Dorfman R., “An economic interpretation of optimal control theory”, Amer. Econ. Rev., 59 (1969), 817–831
[13] Ekeland I., “Some variational problems arising from mathematical economics”, Mathematical economics, Lect. Notes Math., 1330, Springer, Berlin, 1988, 1–18 | MR
[14] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl
[15] Kamihigashi T., “Necessity of transversality conditions for infinite horizon problems”, Econometrica, 69 (2001), 995–1012 | DOI | MR | Zbl
[16] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50 (1982), 975–985 | DOI | MR | Zbl
[17] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon, optimal control problems”, J. Optim. Theory and Appl., 103:1 (1999), 201–229 | DOI | MR | Zbl
[18] Seierstad A., Sydsæter K., Optimal control theory with economic applications, North-Holland, Amsterdam, 1987 | MR | Zbl
[19] Sethi S. P., Thompson G. L., Optimal control theory: applications to management science and economics, Kluwer, Dordrecht, 2000 | MR | Zbl
[20] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics 1, Lect. Notes Oper. Res. and Math. Econ., 11, Springer, Berlin, 1969, 241–292 | MR
[21] Smirnov G. V., “Transversality condition for infinite-horizon problems”, J. Optim. Theory and Appl., 88:3 (1996), 671–688 | DOI | MR | Zbl
[22] Weitzman M. L., Income, wealth, and the maximum principle, Harvard Univ. Press, Cambridge, MA, 2003
[23] Ye J. J., “Nonsmooth maximum principle for infinite-horizon problems”, J. Optim. Theory and Appl., 76:3 (1993), 485–500 | DOI | MR | Zbl