On a~Class of Optimal Control Problems Arising in Mathematical Economics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 16-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the properties of the adjoint variable in the relations of the Pontryagin maximum principle for a class of optimal control problems that arise in mathematical economics. This class is characterized by an infinite time interval on which a control process is considered and by a special goal functional defined by an improper integral with a discounting factor. Under a dominating discount condition, we discuss a variant of the Pontryagin maximum principle that was obtained recently by the authors and contains a description of the adjoint variable by a formula analogous to the well-known Cauchy formula for the solutions of linear differential equations. In a number of important cases, this description of the adjoint variable leads to standard transversality conditions at infinity that are usually applied when solving optimal control problems in economics. As an illustration, we analyze a conventionalized model of optimal investment policy of an enterprise.
@article{TM_2008_262_a2,
     author = {S. M. Aseev and A. V. Kryazhimskii},
     title = {On {a~Class} of {Optimal} {Control} {Problems} {Arising} in {Mathematical} {Economics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {16--31},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a2/}
}
TY  - JOUR
AU  - S. M. Aseev
AU  - A. V. Kryazhimskii
TI  - On a~Class of Optimal Control Problems Arising in Mathematical Economics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 16
EP  - 31
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a2/
LA  - ru
ID  - TM_2008_262_a2
ER  - 
%0 Journal Article
%A S. M. Aseev
%A A. V. Kryazhimskii
%T On a~Class of Optimal Control Problems Arising in Mathematical Economics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 16-31
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a2/
%G ru
%F TM_2008_262_a2
S. M. Aseev; A. V. Kryazhimskii. On a~Class of Optimal Control Problems Arising in Mathematical Economics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 16-31. http://geodesic.mathdoc.fr/item/TM_2008_262_a2/

[1] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo upravleniya s funktsionalom, zadannym nesobstvennym integralom”, DAN, 394:5 (2004), 583–585 | MR | Zbl

[2] Aseev S. M., Kryazhimskii A. V., Printsip maksimuma Pontryagina i zadachi optimalnogo ekonomicheskogo rosta, Tr. MIAN, 257, Nauka, M., 2007 | MR

[3] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | Zbl

[5] Arrow K. J., Kurz M., Public investment, the rate of return, and optimal fiscal policy, J. Hopkins Univ. Press, Baltimore, MD, 1970

[6] Aseev S. M., Kryazhimskiy A. V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control and Optim., 43 (2004), 1094–1119 | DOI | Zbl

[7] Aubin J.-P., Clarke F. H., “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control and Optim., 17 (1979), 567–586 | DOI | MR | Zbl

[8] Balder E. J., “An existence result for optimal economic growth problems”, J. Math. Anal. and Appl., 95 (1983), 195–213 | DOI | MR | Zbl

[9] Benveniste L. M., Scheinkman J. A., “Duality theory for dynamic optimization models of economics: the continuous time case”, J. Econ. Theory., 27 (1982), 1–19 | DOI | MR | Zbl

[10] Cesari L., Asymptotic behavior and stability problems in ordinary differential equations, Springer, Berlin, 1959 | MR | Zbl

[11] Clarke F. H., Optimization and nonsmooth analysis, J. Wiley, New York, 1983 | MR | Zbl

[12] Dorfman R., “An economic interpretation of optimal control theory”, Amer. Econ. Rev., 59 (1969), 817–831

[13] Ekeland I., “Some variational problems arising from mathematical economics”, Mathematical economics, Lect. Notes Math., 1330, Springer, Berlin, 1988, 1–18 | MR

[14] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl

[15] Kamihigashi T., “Necessity of transversality conditions for infinite horizon problems”, Econometrica, 69 (2001), 995–1012 | DOI | MR | Zbl

[16] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50 (1982), 975–985 | DOI | MR | Zbl

[17] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon, optimal control problems”, J. Optim. Theory and Appl., 103:1 (1999), 201–229 | DOI | MR | Zbl

[18] Seierstad A., Sydsæter K., Optimal control theory with economic applications, North-Holland, Amsterdam, 1987 | MR | Zbl

[19] Sethi S. P., Thompson G. L., Optimal control theory: applications to management science and economics, Kluwer, Dordrecht, 2000 | MR | Zbl

[20] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics 1, Lect. Notes Oper. Res. and Math. Econ., 11, Springer, Berlin, 1969, 241–292 | MR

[21] Smirnov G. V., “Transversality condition for infinite-horizon problems”, J. Optim. Theory and Appl., 88:3 (1996), 671–688 | DOI | MR | Zbl

[22] Weitzman M. L., Income, wealth, and the maximum principle, Harvard Univ. Press, Cambridge, MA, 2003

[23] Ye J. J., “Nonsmooth maximum principle for infinite-horizon problems”, J. Optim. Theory and Appl., 76:3 (1993), 485–500 | DOI | MR | Zbl