Invariant and Stably Invariant Sets for Differential Inclusions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 202-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss conditions, in terms of Lyapunov functions, under which a given set in the extended phase space of a nonautonomous differential inclusion becomes positively invariant, invariant, stably invariant, or asymptotically stably invariant. We also derive conditions under which the integral funnel of a differential inclusion is recurrent in time. A series of examples are considered.
@article{TM_2008_262_a15,
     author = {E. A. Panasenko and E. L. Tonkov},
     title = {Invariant and {Stably} {Invariant} {Sets} for {Differential} {Inclusions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {202--221},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a15/}
}
TY  - JOUR
AU  - E. A. Panasenko
AU  - E. L. Tonkov
TI  - Invariant and Stably Invariant Sets for Differential Inclusions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 202
EP  - 221
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a15/
LA  - ru
ID  - TM_2008_262_a15
ER  - 
%0 Journal Article
%A E. A. Panasenko
%A E. L. Tonkov
%T Invariant and Stably Invariant Sets for Differential Inclusions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 202-221
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a15/
%G ru
%F TM_2008_262_a15
E. A. Panasenko; E. L. Tonkov. Invariant and Stably Invariant Sets for Differential Inclusions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 202-221. http://geodesic.mathdoc.fr/item/TM_2008_262_a15/

[1] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, Nauka, M., 1985, 194–252 | MR

[2] Panasenko E. A., “Ustoichivo invariantnye mnozhestva differentsialnykh vklyuchenii”, Izv. In-ta mat. i inform. UdGU (Izhevsk), 2006, no. 3, 121–122

[3] Panasenko E. A., Tonkov E. L., “Attraktory differentsialnykh vklyuchenii”, Matematicheskaya teoriya optimalnogo upravleniya i teoriya differentsialnykh vklyuchenii, Nauch. sem., posv. 60-letiyu V. I. Blagodatskikh, MIAN, M., 2006, 32

[4] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhteorizdat, M., 1949, 550 pp.

[5] Anosov D. V., Aranson S. Kh., Arnold V. I., Bronshtein I. U., Grines V. Z., Ilyashenko Yu. S., Dinamicheskie sistemy – 1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 1, VINITI, M., 1985, 244 pp. | MR

[6] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 223 pp. | MR

[7] Roxin E., “Stability in general control systems”, J. Diff. Equat., 1:2 (1965), 115–150 | DOI | MR | Zbl

[8] Sibirskii K. S., Shube A. S., Poludinamicheskie sistemy (topologicheskaya teoriya), Shtiintsa, Kishinev, 1987, 271 pp. | MR | Zbl

[9] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 300 pp. | MR | Zbl

[10] Aubin J.-P., Viability theory, Birkhäuser, Boston–Basel–Berlin, 1991, 543 pp. | MR | Zbl

[11] Irisov A. E., Tonkov E. L., “Dostatochnye usloviya optimalnosti rekurrentnykh po Birkgofu dvizhenii differentsialnogo vklyucheniya”, Vestn. Udmurt. un-ta (Izhevsk), 2005, no. 1, 59–74

[12] Benedetti I., Panasenko E., “Positive invariance and differential inclusions with periodic right-hand side”, Nonlin. Dyn. and Syst. Theory, 7:4 (2007), 339–349 | MR | Zbl

[13] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970, 240 pp. | MR | Zbl

[14] Deimling K., Multivalued differential equations, De Gruyter Ser. Nonlin. Anal. and Appl., 1, W. de Gruyter, Berlin–New York, 1992, 260 pp. | MR | Zbl

[15] Barbashin E. A., Krasovskii N. N., “Ob ustoichivosti dvizheniya v tselom”, DAN SSSR, 86:3 (1952), 453–456 | Zbl

[16] Bebutov M. V., “O dinamicheskikh sistemakh v prostranstve nepreryvnykh funktsii”, Byul. Mekh.-mat. fak. MGU, {No 5}, 1941, 1–52