Newton's Method, Differential Equations, and the Lagrangian Principle for Necessary Extremum Conditions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 156-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how one can use a modified Newton's method to prove existence and uniqueness theorems for solutions of differential equations and theorems on the continuous and differentiable dependence of these solutions on the initial data and parameters and to derive necessary conditions for an extremum in various extremum problems (from the origins to our days).
@article{TM_2008_262_a11,
     author = {G. G. Magaril-Il'yaev and V. M. Tikhomirov},
     title = {Newton's {Method,} {Differential} {Equations,} and the {Lagrangian} {Principle} for {Necessary} {Extremum} {Conditions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {156--177},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a11/}
}
TY  - JOUR
AU  - G. G. Magaril-Il'yaev
AU  - V. M. Tikhomirov
TI  - Newton's Method, Differential Equations, and the Lagrangian Principle for Necessary Extremum Conditions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 156
EP  - 177
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a11/
LA  - ru
ID  - TM_2008_262_a11
ER  - 
%0 Journal Article
%A G. G. Magaril-Il'yaev
%A V. M. Tikhomirov
%T Newton's Method, Differential Equations, and the Lagrangian Principle for Necessary Extremum Conditions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 156-177
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a11/
%G ru
%F TM_2008_262_a11
G. G. Magaril-Il'yaev; V. M. Tikhomirov. Newton's Method, Differential Equations, and the Lagrangian Principle for Necessary Extremum Conditions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 156-177. http://geodesic.mathdoc.fr/item/TM_2008_262_a11/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, 2-e izd., Fizmatlit, M., 2005

[2] Arutyunov A. V., Magaril-Ilyaev G. G., Tikhomirov V. M., Printsip maksimuma Pontryagina: Dokazatelstvo i prilozheniya, Faktorial, M., 2006

[3] Bliss G. A., Lektsii po variatsionnomu ischisleniyu, Izd-vo inostr. lit., M., 1950

[4] Graves L. M., “Some mapping theorems”, Duke Math. J., 17 (1950), 111–114 | DOI | MR | Zbl

[5] John F., “Extreme problems with inequalities as subsidiary conditions”, Studies and essays presented to R. Courant on his 60th birthday, Jan. 8, 1948, Intersci. Publ., New York, 1948, 187–204 | MR

[6] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, ZhVMiMF, 5:3 (1965), 395–453 | Zbl

[7] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 4-e izd., Nauka, M., 1976 | MR

[9] Lyusternik L. A., “Ob usloviyakh ekstremuma funktsionalov”, Mat. sb., 41:3 (1934), 390–401 | Zbl

[10] Nyuton I., Matematicheskie raboty, ONTI, M., L., 1937

[11] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961 | Zbl

[12] Robinson S., “Stability theory for systems of inequalities. II: Differentiable nonlinear systems”, SIAM J. Numer. Anal., 13 (1976), 497–513 | DOI | MR | Zbl

[13] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl