On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 146-155

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear control systems possessing the flatness property are encountered in many applied mathematical models. In this paper, a trajectory survival problem is considered for a specific nonlinear system that possesses the above property. A method based on the properties of the system is proposed for constructing a control that solves the trajectory survival problem when the controlled object moves to the goal set within a bounding set containing an obstacle. Results of numerical calculations of the control and the trajectory of a system with a given initial position are presented.
@article{TM_2008_262_a10,
     author = {L. N. Luk'yanova},
     title = {On the {Solution} of the {Trajectory} {Survival} {Problem} for {a~Nonlinear} {Dynamical} {System}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {146--155},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a10/}
}
TY  - JOUR
AU  - L. N. Luk'yanova
TI  - On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 146
EP  - 155
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a10/
LA  - ru
ID  - TM_2008_262_a10
ER  - 
%0 Journal Article
%A L. N. Luk'yanova
%T On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 146-155
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a10/
%G ru
%F TM_2008_262_a10
L. N. Luk'yanova. On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 146-155. http://geodesic.mathdoc.fr/item/TM_2008_262_a10/