On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 146-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear control systems possessing the flatness property are encountered in many applied mathematical models. In this paper, a trajectory survival problem is considered for a specific nonlinear system that possesses the above property. A method based on the properties of the system is proposed for constructing a control that solves the trajectory survival problem when the controlled object moves to the goal set within a bounding set containing an obstacle. Results of numerical calculations of the control and the trajectory of a system with a given initial position are presented.
@article{TM_2008_262_a10,
     author = {L. N. Luk'yanova},
     title = {On the {Solution} of the {Trajectory} {Survival} {Problem} for {a~Nonlinear} {Dynamical} {System}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {146--155},
     publisher = {mathdoc},
     volume = {262},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a10/}
}
TY  - JOUR
AU  - L. N. Luk'yanova
TI  - On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 146
EP  - 155
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_262_a10/
LA  - ru
ID  - TM_2008_262_a10
ER  - 
%0 Journal Article
%A L. N. Luk'yanova
%T On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 146-155
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_262_a10/
%G ru
%F TM_2008_262_a10
L. N. Luk'yanova. On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 146-155. http://geodesic.mathdoc.fr/item/TM_2008_262_a10/

[1] Martin Ph., Rouchon P., “Feedback linearization and driftless systems”, Math. Control Signals and Syst., 7:3 (1994), 235–254 | DOI | MR | Zbl

[2] Chetverikov V. N., “Dinamicheski linearizuemye i ploskie sistemy s upravleniem”, Dif. uravneniya, 42:8 (2006), 1143–1144

[3] Pontryagin L. S., Izbrannye trudy, Maks Press, M., 2004, 552 pp.

[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 520 pp. | MR

[5] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vyssh. shk., M., 2001, 239 pp.

[6] Lukyanova L. N., “Zadacha ukloneniya ot stolknoveniya dlya lineinoi upravlyaemoi sistemy”, Vestn. Mosk. un-ta. Vychisl. matematika i kibernetika, 2005, no. 3, 29–35 | MR

[7] J.-P. Laumond (ed.), Robot motion planning and control, Springer, Berlin, 1998 | MR

[8] Budanov V. M., Devyanin E. A., “O dvizhenii kolesnykh robotov”, PMM, 67:2 (2003), 244–255 | MR | Zbl

[9] Lukyanova L. N., “Rekonstruktsiya upravleniya v zadache ukloneniya ot stolknoveniya”, Teoriya upravleniya i teoriya obobschennykh reshenii uravneniya Gamiltona–Yakobi, Tr. Mezhdunar. sem., posv. 60-letiyu akad. A. I. Subbotina, T. 2, Izd-vo Ural. un-ta, Ekaterinburg, 2006, 102–110

[10] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[11] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo Mosk. un-ta., M., 1999

[12] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR