Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2008_262_a10, author = {L. N. Luk'yanova}, title = {On the {Solution} of the {Trajectory} {Survival} {Problem} for {a~Nonlinear} {Dynamical} {System}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {146--155}, publisher = {mathdoc}, volume = {262}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2008_262_a10/} }
TY - JOUR AU - L. N. Luk'yanova TI - On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 146 EP - 155 VL - 262 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2008_262_a10/ LA - ru ID - TM_2008_262_a10 ER -
L. N. Luk'yanova. On the Solution of the Trajectory Survival Problem for a~Nonlinear Dynamical System. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control, Tome 262 (2008), pp. 146-155. http://geodesic.mathdoc.fr/item/TM_2008_262_a10/
[1] Martin Ph., Rouchon P., “Feedback linearization and driftless systems”, Math. Control Signals and Syst., 7:3 (1994), 235–254 | DOI | MR | Zbl
[2] Chetverikov V. N., “Dinamicheski linearizuemye i ploskie sistemy s upravleniem”, Dif. uravneniya, 42:8 (2006), 1143–1144
[3] Pontryagin L. S., Izbrannye trudy, Maks Press, M., 2004, 552 pp.
[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi: Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 520 pp. | MR
[5] Blagodatskikh V. I., Vvedenie v optimalnoe upravlenie, Vyssh. shk., M., 2001, 239 pp.
[6] Lukyanova L. N., “Zadacha ukloneniya ot stolknoveniya dlya lineinoi upravlyaemoi sistemy”, Vestn. Mosk. un-ta. Vychisl. matematika i kibernetika, 2005, no. 3, 29–35 | MR
[7] J.-P. Laumond (ed.), Robot motion planning and control, Springer, Berlin, 1998 | MR
[8] Budanov V. M., Devyanin E. A., “O dvizhenii kolesnykh robotov”, PMM, 67:2 (2003), 244–255 | MR | Zbl
[9] Lukyanova L. N., “Rekonstruktsiya upravleniya v zadache ukloneniya ot stolknoveniya”, Teoriya upravleniya i teoriya obobschennykh reshenii uravneniya Gamiltona–Yakobi, Tr. Mezhdunar. sem., posv. 60-letiyu akad. A. I. Subbotina, T. 2, Izd-vo Ural. un-ta, Ekaterinburg, 2006, 102–110
[10] Kassels Dzh. V. S., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR
[11] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo Mosk. un-ta., M., 1999
[12] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR