Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 97-100
Voir la notice de l'article provenant de la source Math-Net.Ru
For the coefficients of lower order terms of a second-order parabolic equation, we obtain sharp sufficient conditions under which the solution of the Cauchy problem stabilizes to zero uniformly in $x$ on each compact set $K$ in $\mathbb R^N$ for any exponentially growing initial function.
@article{TM_2008_261_a7,
author = {V. N. Denisov},
title = {Stabilization of {Solution} to the {Cauchy} {Problem} for {a~Parabolic} {Equation} with {Lower} {Order} {Coefficients} and an {Exponentially} {Growing} {Initial} {Function}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {97--100},
publisher = {mathdoc},
volume = {261},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2008_261_a7/}
}
TY - JOUR AU - V. N. Denisov TI - Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 97 EP - 100 VL - 261 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2008_261_a7/ LA - ru ID - TM_2008_261_a7 ER -
%0 Journal Article %A V. N. Denisov %T Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 97-100 %V 261 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2008_261_a7/ %G ru %F TM_2008_261_a7
V. N. Denisov. Stabilization of Solution to the Cauchy Problem for a~Parabolic Equation with Lower Order Coefficients and an Exponentially Growing Initial Function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 97-100. http://geodesic.mathdoc.fr/item/TM_2008_261_a7/