A Mapping Method in Inverse Sturm--Liouville Problems with Singular Potentials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 243-248

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L_2[0,\pi]$, the Sturm–Liouville operator $L_\mathrm D(y)=-y''+q(x)y$ with the Dirichlet boundary conditions $y(0)=y(\pi)=0$ is analyzed. The potential $q$ is assumed to be singular; namely, $q=\sigma'$, where $\sigma\in L_2[0,\pi]$, i.e., $q\in W_2^{-1}[0,\pi]$. The inverse problem of reconstructing the function $\sigma$ from the spectrum of the operator $L_\mathrm D$ is solved in the subspace of odd real functions $\sigma(\pi/2-x)=-\sigma(\pi/2+x)$. The existence and uniqueness of a solution to this inverse problem is proved. A method is proposed that allows one to solve this problem numerically.
@article{TM_2008_261_a17,
     author = {A. M. Savchuk},
     title = {A {Mapping} {Method} in {Inverse} {Sturm--Liouville} {Problems} with {Singular} {Potentials}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {243--248},
     publisher = {mathdoc},
     volume = {261},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_261_a17/}
}
TY  - JOUR
AU  - A. M. Savchuk
TI  - A Mapping Method in Inverse Sturm--Liouville Problems with Singular Potentials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 243
EP  - 248
VL  - 261
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_261_a17/
LA  - ru
ID  - TM_2008_261_a17
ER  - 
%0 Journal Article
%A A. M. Savchuk
%T A Mapping Method in Inverse Sturm--Liouville Problems with Singular Potentials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 243-248
%V 261
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_261_a17/
%G ru
%F TM_2008_261_a17
A. M. Savchuk. A Mapping Method in Inverse Sturm--Liouville Problems with Singular Potentials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 261 (2008), pp. 243-248. http://geodesic.mathdoc.fr/item/TM_2008_261_a17/