On Nonexistence of Baras--Goldstein Type without Positivity Assumptions for Singular Linear and Nonlinear Parabolic Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 130-150

Voir la notice de l'article provenant de la source Math-Net.Ru

The celebrated result by Baras and Goldstein (1984) established that the heat equation with the inverse square potential in the unit ball $B_1\subset\mathbb R^N$, $N\ge3$, $u_t=\Delta u+\frac c{|x|^2}u$ in $B_1\times(0,T)$, $u|_{\partial B_1}=0$, in the supercritical range $c>c_\mathrm{Hardy}=\bigl(\frac{N-2}2\bigr)^2$ does not have a solution for any nontrivial $L^1$ initial data $u_0(x)\ge0$ in $B_1$ (or for a positive measure $u_0$). More precisely, it was proved that a regular approximation of a possible solution by a sequence $\{u_n(x,t)\}$ of classical solutions corresponding to truncated bounded potentials given by $V(x)=\frac c{|x|^2}\mapsto V_n(x)=\min\bigl \{\frac c{|x|^2},n\bigr\}$ ($n\ge1$) diverges; i.e., as $n\to\infty$, $u_n(x,t)\to+\infty$ in $B_1\times(0,T)$. Similar features of “nonexistence via approximation” for semilinear heat PDEs were inherent in related results by Brezis–Friedman (1983) and Baras–Cohen (1987). The main goal of this paper is to justify that this nonexistence result has wider nature and remains true without the positivity assumption on data $u_0(x)$ that are assumed to be regular and positive at $x=0$. Moreover, nonexistence as the impossibility of regular approximations of solutions is true for a wide class of singular nonlinear parabolic problems as well as for higher order PDEs including, e.g., $u_t =\Delta(|u|^{m-1}u)+\frac{|u|^{p-1}u}{|x|^2}$, $m\ge1$, $p>1$, and $u_t=-\Delta^2u+\frac c{|x|^4}u$, $c>c_\mathrm H=\bigl[\frac{N(N-4)}4\bigr]^2$, $N>4$.
@article{TM_2008_260_a8,
     author = {V. A. Galaktionov},
     title = {On {Nonexistence} of {Baras--Goldstein} {Type} without {Positivity} {Assumptions} for {Singular} {Linear} and {Nonlinear} {Parabolic} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {130--150},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a8/}
}
TY  - JOUR
AU  - V. A. Galaktionov
TI  - On Nonexistence of Baras--Goldstein Type without Positivity Assumptions for Singular Linear and Nonlinear Parabolic Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 130
EP  - 150
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a8/
LA  - en
ID  - TM_2008_260_a8
ER  - 
%0 Journal Article
%A V. A. Galaktionov
%T On Nonexistence of Baras--Goldstein Type without Positivity Assumptions for Singular Linear and Nonlinear Parabolic Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 130-150
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a8/
%G en
%F TM_2008_260_a8
V. A. Galaktionov. On Nonexistence of Baras--Goldstein Type without Positivity Assumptions for Singular Linear and Nonlinear Parabolic Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 130-150. http://geodesic.mathdoc.fr/item/TM_2008_260_a8/