Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2008_260_a8, author = {V. A. Galaktionov}, title = {On {Nonexistence} of {Baras--Goldstein} {Type} without {Positivity} {Assumptions} for {Singular} {Linear} and {Nonlinear} {Parabolic} {Equations}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {130--150}, publisher = {mathdoc}, volume = {260}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a8/} }
TY - JOUR AU - V. A. Galaktionov TI - On Nonexistence of Baras--Goldstein Type without Positivity Assumptions for Singular Linear and Nonlinear Parabolic Equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 130 EP - 150 VL - 260 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2008_260_a8/ LA - en ID - TM_2008_260_a8 ER -
%0 Journal Article %A V. A. Galaktionov %T On Nonexistence of Baras--Goldstein Type without Positivity Assumptions for Singular Linear and Nonlinear Parabolic Equations %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 130-150 %V 260 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2008_260_a8/ %G en %F TM_2008_260_a8
V. A. Galaktionov. On Nonexistence of Baras--Goldstein Type without Positivity Assumptions for Singular Linear and Nonlinear Parabolic Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 130-150. http://geodesic.mathdoc.fr/item/TM_2008_260_a8/
[1] Angenent S., “The zero set of a solution of a parabolic equation”, J. reine und angew. Math., 390 (1988), 79–96 | MR | Zbl
[2] Baras P., Cohen L., “Complete blow-up after $T_{\mathrm{max}}$ for the solution of a semilinear heat equation”, J. Funct. Anal., 71 (1987), 142–174 | DOI | MR | Zbl
[3] Baras P., Cohen L., “Sur l'explosion totale après $T_{\mathrm{max}}$ de la solution d'une équation de la chaleur semi-linéaire”, C. r. Acad. sci. Paris. Sér. 1, 300 (1985), 295–298 | MR | Zbl
[4] Baras P., Goldstein J. A., “The heat equation with a singular potential”, Trans. Amer. Math. Soc., 284 (1984), 121–139 | DOI | MR | Zbl
[5] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo LGU, L., 1980 | MR
[6] Brezis H., Cabré X., “Some simple nonlinear PDE's without solutions”, Boll. Unione mat. Ital. B: Artic. ric. mat., 1:2 (1998), 223–262 | MR | Zbl
[7] Brezis H., Cazenave T., Martel Y., Ramiandrisoa A., “Blow up for $u_t-\Delta u=g(u)$ revisited”, Adv. Diff. Equat., 1 (1996), 73–90 | MR | Zbl
[8] Brezis H., Friedman A., “Nonlinear parabolic equations involving measures as initial conditions”, J. math. pures et appl., 62 (1983), 73–97 | MR | Zbl
[9] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, London, 1955 | MR | Zbl
[10] Dold J. W., Galaktionov V. A., Lacey A. A., Vázquez J. L., “Rate of approach to a singular steady state in quasilinear reaction-diffusion equations”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 26 (1998), 663–687 | MR | Zbl
[11] Fila M., Matano H., Poláčik P., “Immediate regularization after blow-up”, SIAM J. Math. Anal., 37 (2005), 752–776 | DOI | MR | Zbl
[12] Galaktionov V. A., Geometric Sturmian theory of nonlinear parabolic equations and applications, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl
[13] Galaktionov V. A., “On extensions of Hardy's inequalities”, Commun. Contemp. Math., 7 (2005), 97–120 | DOI | MR | Zbl
[14] Galaktionov V. A., “On extensions of higher-order Hardy's inequalities”, Diff. and Integr. Equat., 19 (2006), 327–344 | MR
[15] Galaktionov V. A., Kamotski I. V., “On nonexistence of Baras–Goldstein type for higher-order parabolic equations with singular potentials”, Trans. Amer. Math. Soc. (to appear)
[16] Galaktionov V. A., Shishkov A. E., “Higher-order quasilinear parabolic equations with singular initial data”, Commun. Contemp. Math., 8 (2006), 331–354 | DOI | MR | Zbl
[17] Galaktionov V. A., Vazquez J. L., “Continuation of blowup solutions of nonlinear heat equations in several space dimensions”, Commun. Pure and Appl. Math., 50 (1997), 1–67 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[18] Goldstein G. R., Goldstein J. A., Kombe I., “Nonlinear parabolic equations with singular coefficient and critical exponent”, Appl. Anal., 84 (2005), 571–583 | DOI | MR | Zbl
[19] Goldstein J. A., Zhang Q. S., “On a degenerate heat equation with a singular potential”, J. Funct. Anal., 186 (2001), 342–359 | DOI | MR | Zbl
[20] Goldstein J. A., Zhang Q. S., “Linear parabolic equations with strong singular potentials”, Trans. Amer. Math. Soc., 355 (2003), 197–211 | DOI | MR | Zbl
[21] Hale J. K., Asymptotic behavior of dissipative systems, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[22] Hulshof J., “Similarity solutions of the porous medium equation with sign changes”, J. Math. Anal. and Appl., 157 (1991), 75–111 | DOI | MR | Zbl
[23] Kato T., Perturbation theory for linear operators, Springer–Verlag, Berlin, New York, 1976 | MR
[24] Kombe I., “The linear heat equation with highly oscillating potential”, Proc. Amer. Math. Soc., 132 (2004), 2683–2691 | DOI | MR | Zbl
[25] Kombe I., “Nonlinear degenerate parabolic equations for Baouendi–Grushin operators”, Math. Nachr., 279 (2006), 756–773 | DOI | MR | Zbl
[26] Martel Y., “Complete blow up and global behaviour of solutions of $u_t-\Delta u=g(u)$”, Ann. Inst. H. Poincaré. Anal. non lin., 15 (1998), 687–723 | DOI | MR | Zbl
[27] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR
[28] Naimark M. A., Lineinye differentsialnye operatory, Gostekhizdat, M., 1954
[29] Pisante A., “Hardy inequalities and dynamic instability of singular Yamabe metrics”, Ann. Inst. H. Poincaré. Anal. non lin., 23 (2006), 591–628 | DOI | MR | Zbl
[30] Sturm C., “Mémoire sur une classe d'équations à différences partielles”, J. math. pures et appl., 1 (1836), 373–444