On the Properties of Maps Connected with Inverse Sturm--Liouville Problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 227-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_\mathrm D$ be the Sturm–Liouville operator generated by the differential expression $Ly=-y''+q(x)y$ on the finite interval $[0,\pi]$ and by the Dirichlet boundary conditions. We assume that the potential $q$ belongs to the Sobolev space $W^\theta_2[0,\pi]$ with some $\theta\geq-1$. It is well known that one can uniquely recover the potential $q$ from the spectrum and the norming constants of the operator $L_\mathrm D$. In this paper, we construct special spaces of sequences $\widehat l_2^{\,\theta}$ in which the regularized spectral data $\{s_k\}_{-\infty}^\infty$ of the operator $L_\mathrm D$ are placed. We prove the following main theorem: the map $Fq=\{s_k\}$ from $W^\theta _2$ to $\widehat l_2^{\,\theta}$ is weakly nonlinear (i.e., it is a compact perturbation of a linear map). A similar result is obtained for the operator $L_\mathrm{DN}$ generated by the same differential expression and the Dirichlet–Neumann boundary conditions. These results serve as a basis for solving the problem of uniform stability of recovering a potential. Note that this problem has not been considered in the literature. The uniform stability results are formulated here, but their proof will be presented elsewhere.
@article{TM_2008_260_a15,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {On the {Properties} of {Maps} {Connected} with {Inverse} {Sturm--Liouville} {Problems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {227--247},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a15/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - On the Properties of Maps Connected with Inverse Sturm--Liouville Problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 227
EP  - 247
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a15/
LA  - ru
ID  - TM_2008_260_a15
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T On the Properties of Maps Connected with Inverse Sturm--Liouville Problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 227-247
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a15/
%G ru
%F TM_2008_260_a15
A. M. Savchuk; A. A. Shkalikov. On the Properties of Maps Connected with Inverse Sturm--Liouville Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 227-247. http://geodesic.mathdoc.fr/item/TM_2008_260_a15/

[1] Borg G., “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe”, Acta math., 78 (1946), 1–96 | DOI | MR | Zbl

[2] Djakov P., Mityagin B., Fourier method for one dimensional Schrödinger operator with singular periodic potential, , 2007 arXiv: /0710.0237 | MR

[3] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | MR | Zbl

[4] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[5] Freiling G., Yurko V., Inverse Sturm–Liouville problems and their applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl

[6] Hryniv R. O., Mykytyuk Ya. V., “1D Schrödinger operators with periodic singular potentials”, Meth. Func. Anal. and Topol., 7:4 (2001), 31–42 | MR | Zbl

[7] Hryniv R. O., Mykytyuk Ya. V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Problems, 19:3 (2003), 665–684 | DOI | MR | Zbl

[8] Hryniv R. O., Mykytyuk Ya. V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials. II: Reconstruction by two spectra”, Functional analysis and its applications, North-Holland Math. Stud., 197, eds. V. Kadets, W. Zelazko, North-Holland, Amsterdam, 2004, 97–114 | MR | Zbl

[9] Hryniv R. O., Mykytyuk Ya. V., “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. and Geom., 7 (2004), 119–149 | DOI | MR | Zbl

[10] Hryniv R. O., Mykytyuk Ya. V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV: Potentials in the Sobolev space scale”, Proc. Edinburgh Math. Soc. Ser. 2, 49:2 (2006), 309–329 | DOI | MR | Zbl

[11] Hryniv R. O., Mykytyuk Y. V., “Eigenvalue asymptotics for Sturm–Liouville operators with singular potentials”, J. Funct. Anal., 238:1 (2006), 27–57 ; arXiv: /math/0407252 | DOI | MR | Zbl

[12] Kappeler T., Möhr C., “Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials”, J. Funct. Anal., 186:1 (2001), 62–91 | DOI | MR | Zbl

[13] Korotyaev E., “Characterization of the spectrum of Schrödinger operators with periodic distributions”, Intern. Math. Res. Not., 2003, no. 37, 2019–2031 | DOI | MR | Zbl

[14] Levitan B. M., “Opredelenie differentsialnogo operatora po dvum spektram”, Izv. AN SSSR. Ser. mat., 28:1 (1964), 63–78 | MR | Zbl

[15] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[16] Marchenko V. A., “Nekotorye voprosy teorii odnomernykh lineinykh differentsialnykh operatorov vtorogo poryadka. I”, Tr. Mosk. mat. o-va, 1 (1952), 327–420

[17] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR

[18] McLaughlin J. R., “Stability theorems for two inverse spectral problems”, Inverse Problems, 4:2 (1988), 529–540 | DOI | MR | Zbl

[19] Pöschel J., Trubowitz E., Inverse spectral theory, Acad. Press, Boston, 1987 | MR | Zbl

[20] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Mat. zametki, 66:6 (1999), 897–912 | MR | Zbl

[21] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. Mosk. mat. o-va, 64 (2003), 159–219 | MR

[22] Savchuk A. M., Shkalikov A. A., “Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra”, Russ. J. Math. Phys., 12 (2005), 507–514 | MR | Zbl

[23] Savchuk A. M., Shkalikov A. A., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva”, Mat. zametki, 80:6 (2006), 864–884 | MR | Zbl

[24] Tartar L., “Interpolation non linéaire et régularité”, J. Funct. Anal., 9 (1972), 469–489 | DOI | MR | Zbl

[25] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl