On the Properties of Maps Connected with Inverse Sturm--Liouville Problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 227-247

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_\mathrm D$ be the Sturm–Liouville operator generated by the differential expression $Ly=-y''+q(x)y$ on the finite interval $[0,\pi]$ and by the Dirichlet boundary conditions. We assume that the potential $q$ belongs to the Sobolev space $W^\theta_2[0,\pi]$ with some $\theta\geq-1$. It is well known that one can uniquely recover the potential $q$ from the spectrum and the norming constants of the operator $L_\mathrm D$. In this paper, we construct special spaces of sequences $\widehat l_2^{\,\theta}$ in which the regularized spectral data $\{s_k\}_{-\infty}^\infty$ of the operator $L_\mathrm D$ are placed. We prove the following main theorem: the map $Fq=\{s_k\}$ from $W^\theta _2$ to $\widehat l_2^{\,\theta}$ is weakly nonlinear (i.e., it is a compact perturbation of a linear map). A similar result is obtained for the operator $L_\mathrm{DN}$ generated by the same differential expression and the Dirichlet–Neumann boundary conditions. These results serve as a basis for solving the problem of uniform stability of recovering a potential. Note that this problem has not been considered in the literature. The uniform stability results are formulated here, but their proof will be presented elsewhere.
@article{TM_2008_260_a15,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {On the {Properties} of {Maps} {Connected} with {Inverse} {Sturm--Liouville} {Problems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {227--247},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a15/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - On the Properties of Maps Connected with Inverse Sturm--Liouville Problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 227
EP  - 247
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a15/
LA  - ru
ID  - TM_2008_260_a15
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T On the Properties of Maps Connected with Inverse Sturm--Liouville Problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 227-247
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a15/
%G ru
%F TM_2008_260_a15
A. M. Savchuk; A. A. Shkalikov. On the Properties of Maps Connected with Inverse Sturm--Liouville Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 227-247. http://geodesic.mathdoc.fr/item/TM_2008_260_a15/