Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2008_260_a15, author = {A. M. Savchuk and A. A. Shkalikov}, title = {On the {Properties} of {Maps} {Connected} with {Inverse} {Sturm--Liouville} {Problems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {227--247}, publisher = {mathdoc}, volume = {260}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a15/} }
TY - JOUR AU - A. M. Savchuk AU - A. A. Shkalikov TI - On the Properties of Maps Connected with Inverse Sturm--Liouville Problems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2008 SP - 227 EP - 247 VL - 260 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2008_260_a15/ LA - ru ID - TM_2008_260_a15 ER -
%0 Journal Article %A A. M. Savchuk %A A. A. Shkalikov %T On the Properties of Maps Connected with Inverse Sturm--Liouville Problems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2008 %P 227-247 %V 260 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2008_260_a15/ %G ru %F TM_2008_260_a15
A. M. Savchuk; A. A. Shkalikov. On the Properties of Maps Connected with Inverse Sturm--Liouville Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 227-247. http://geodesic.mathdoc.fr/item/TM_2008_260_a15/
[1] Borg G., “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe”, Acta math., 78 (1946), 1–96 | DOI | MR | Zbl
[2] Djakov P., Mityagin B., Fourier method for one dimensional Schrödinger operator with singular periodic potential, , 2007 arXiv: /0710.0237 | MR
[3] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | MR | Zbl
[4] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964
[5] Freiling G., Yurko V., Inverse Sturm–Liouville problems and their applications, Nova Sci. Publ., Huntington, NY, 2001 | MR | Zbl
[6] Hryniv R. O., Mykytyuk Ya. V., “1D Schrödinger operators with periodic singular potentials”, Meth. Func. Anal. and Topol., 7:4 (2001), 31–42 | MR | Zbl
[7] Hryniv R. O., Mykytyuk Ya. V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Problems, 19:3 (2003), 665–684 | DOI | MR | Zbl
[8] Hryniv R. O., Mykytyuk Ya. V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials. II: Reconstruction by two spectra”, Functional analysis and its applications, North-Holland Math. Stud., 197, eds. V. Kadets, W. Zelazko, North-Holland, Amsterdam, 2004, 97–114 | MR | Zbl
[9] Hryniv R. O., Mykytyuk Ya. V., “Transformation operators for Sturm–Liouville operators with singular potentials”, Math. Phys. Anal. and Geom., 7 (2004), 119–149 | DOI | MR | Zbl
[10] Hryniv R. O., Mykytyuk Ya. V., “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV: Potentials in the Sobolev space scale”, Proc. Edinburgh Math. Soc. Ser. 2, 49:2 (2006), 309–329 | DOI | MR | Zbl
[11] Hryniv R. O., Mykytyuk Y. V., “Eigenvalue asymptotics for Sturm–Liouville operators with singular potentials”, J. Funct. Anal., 238:1 (2006), 27–57 ; arXiv: /math/0407252 | DOI | MR | Zbl
[12] Kappeler T., Möhr C., “Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials”, J. Funct. Anal., 186:1 (2001), 62–91 | DOI | MR | Zbl
[13] Korotyaev E., “Characterization of the spectrum of Schrödinger operators with periodic distributions”, Intern. Math. Res. Not., 2003, no. 37, 2019–2031 | DOI | MR | Zbl
[14] Levitan B. M., “Opredelenie differentsialnogo operatora po dvum spektram”, Izv. AN SSSR. Ser. mat., 28:1 (1964), 63–78 | MR | Zbl
[15] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR
[16] Marchenko V. A., “Nekotorye voprosy teorii odnomernykh lineinykh differentsialnykh operatorov vtorogo poryadka. I”, Tr. Mosk. mat. o-va, 1 (1952), 327–420
[17] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR
[18] McLaughlin J. R., “Stability theorems for two inverse spectral problems”, Inverse Problems, 4:2 (1988), 529–540 | DOI | MR | Zbl
[19] Pöschel J., Trubowitz E., Inverse spectral theory, Acad. Press, Boston, 1987 | MR | Zbl
[20] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Mat. zametki, 66:6 (1999), 897–912 | MR | Zbl
[21] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. Mosk. mat. o-va, 64 (2003), 159–219 | MR
[22] Savchuk A. M., Shkalikov A. A., “Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra”, Russ. J. Math. Phys., 12 (2005), 507–514 | MR | Zbl
[23] Savchuk A. M., Shkalikov A. A., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva”, Mat. zametki, 80:6 (2006), 864–884 | MR | Zbl
[24] Tartar L., “Interpolation non linéaire et régularité”, J. Funct. Anal., 9 (1972), 469–489 | DOI | MR | Zbl
[25] Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl