On the Existence of a~Feller Semigroup with Atomic Measure in a~Nonlocal Boundary Condition
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 164-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of Feller semigroups arising in the theory of multidimensional diffusion processes is studied. An elliptic operator of second order is considered on a plane bounded region $G$. Its domain of definition consists of continuous functions satisfying a nonlocal condition on the boundary of the region. In general, the nonlocal term is an integral of a function over the closure of the region $G$ with respect to a nonnegative Borel measure $\mu(y,d\eta)$, $y\in\partial G$. It is proved that the operator is a generator of a Feller semigroup in the case where the measure is atomic. The smallness of the measure is not assumed.
@article{TM_2008_260_a10,
     author = {P. L. Gurevich},
     title = {On the {Existence} of {a~Feller} {Semigroup} with {Atomic} {Measure} in {a~Nonlocal} {Boundary} {Condition}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {164--179},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a10/}
}
TY  - JOUR
AU  - P. L. Gurevich
TI  - On the Existence of a~Feller Semigroup with Atomic Measure in a~Nonlocal Boundary Condition
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 164
EP  - 179
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a10/
LA  - ru
ID  - TM_2008_260_a10
ER  - 
%0 Journal Article
%A P. L. Gurevich
%T On the Existence of a~Feller Semigroup with Atomic Measure in a~Nonlocal Boundary Condition
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 164-179
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a10/
%G ru
%F TM_2008_260_a10
P. L. Gurevich. On the Existence of a~Feller Semigroup with Atomic Measure in a~Nonlocal Boundary Condition. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 164-179. http://geodesic.mathdoc.fr/item/TM_2008_260_a10/

[1] Venttsel A. D., “O granichnykh usloviyakh dlya mnogomernykh diffuzionnykh protsessov”, Teor. veroyatn. i ee prim., 4:2 (1959), 172–185 | Zbl

[2] Galakhov E. I., Skubachevskii A. L., “O szhimayuschikh neotritsatelnykh polugruppakh s nelokalnymi usloviyami”, Mat. sb., 189:1 (1998), 45–78 | MR | Zbl

[3] Gurevich P. L., “Asimptotika reshenii nelokalnykh ellipticheskikh zadach v ploskikh uglakh”, Tr. sem. im. I. G. Petrovskogo, 23 (2003), 93–126 | MR | Zbl

[4] Gurevich P. L., Skubachevskii A. L., “O fredgolmovoi i odnoznachnoi razreshimosti nelokalnykh ellipticheskikh zadach v mnogomernykh oblastyakh”, Tr. Mosk. mat. o-va, 68 (2007), 288–373 | MR | Zbl

[5] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[6] Skubachevskii A. L., “O nekotorykh zadachakh dlya mnogomernykh diffuzionnykh protsessov”, DAN SSSR, 307 (1989), 287–291

[7] Skubachevskii A. L., “Modelnye nelokalnye zadachi dlya ellipticheskikh uravnenii v dvugrannykh uglakh”, Dif. uravneniya, 26:1 (1990), 120–131 | MR

[8] Bony J. M., Courrege P., Priouret P., “Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum”, Ann. Inst. Fourier, 18:2 (1968), 369–521 | MR | Zbl

[9] Feller W., “The parabolic differential equations and the associated semi-groups of transformations”, Ann. Math. Ser. 2, 55 (1952), 468–519 | DOI | MR | Zbl

[10] Feller W., “Diffusion processes in one dimension”, Trans. Amer. Math. Soc., 77 (1954), 1–31 | DOI | MR | Zbl

[11] Galakhov E. I., Skubachevskii A. L., “On Feller semigroups generated by elliptic operators with integro-differential boundary conditions”, J. Diff. Equat., 176:2 (2001), 315–355 | DOI | MR | Zbl

[12] Gurevich P. L., “Nonlocal problems for elliptic equations in dihedral angles and the Green formula”, Mitt. Math. Sem. Giessen, 247, Math. Inst. Univ. Giessen, Giessen (Germany), 2001, 74 pp. | MR | Zbl

[13] Gurevich P. L., “Solvability of nonlocal elliptic problems in Sobolev spaces. II”, Russ. J. Math. Phys., 11:1 (2004), 1–44 | MR | Zbl

[14] Ishikawa Y., “A remark on the existence of a diffusion process with non-local boundary conditions”, J. Math. Soc. Japan., 42:1 (1990), 171–184 | DOI | MR | Zbl

[15] Sato K., Ueno T., “Multi-dimensional diffusion and the Markov process on the boundary”, J. Math. Kyoto Univ., 4 (1965), 529–605 | MR | Zbl

[16] Skubachevskii A. L., “Nonlocal elliptic problems and multidimensional diffusion processes”, Russ. J. Math. Phys., 3:3 (1995), 327–360 | MR

[17] Taira K., Diffusion processes and partial differential equations, Acad. Press, New York, London, 1988 | MR | Zbl

[18] Taira K., Semigroups, boundary value problems and Markov processes, Springer–Verlag, Berlin, 2004 | MR

[19] Watanabe S., “Construction of diffusion processes with Wentzell's boundary conditions by means of Poisson point processes of Brownian excursions”, Probability theory, Banach Center Publ., 5, Pol. Sci. Publ., Warsaw, 1979, 255–271 | MR