Reduced Measures Associated with Parabolic Problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 10-31

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the existence and the properties of reduced measures for the parabolic equations $\partial_tu-\Delta u+g(u)=0$ in $\Omega\times(0,\infty)$ subject to the conditions (P): $u=0$ on $\partial\Omega\times(0,\infty)$, $u(x,0)=\mu$ and (P$'$): $u=\mu'$ on $\partial\Omega\times(0,\infty)$, $u(x,0)=0$, where $\mu$ and $\mu'$ are positive Radon measures and $g$ is a continuous nondecreasing function.
@article{TM_2008_260_a1,
     author = {W. Al Sayed and M. Jazar and L. V\'eron},
     title = {Reduced {Measures} {Associated} with {Parabolic} {Problems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {10--31},
     publisher = {mathdoc},
     volume = {260},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2008_260_a1/}
}
TY  - JOUR
AU  - W. Al Sayed
AU  - M. Jazar
AU  - L. Véron
TI  - Reduced Measures Associated with Parabolic Problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2008
SP  - 10
EP  - 31
VL  - 260
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2008_260_a1/
LA  - en
ID  - TM_2008_260_a1
ER  - 
%0 Journal Article
%A W. Al Sayed
%A M. Jazar
%A L. Véron
%T Reduced Measures Associated with Parabolic Problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2008
%P 10-31
%V 260
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2008_260_a1/
%G en
%F TM_2008_260_a1
W. Al Sayed; M. Jazar; L. Véron. Reduced Measures Associated with Parabolic Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and nonlinear partial differential equations, Tome 260 (2008), pp. 10-31. http://geodesic.mathdoc.fr/item/TM_2008_260_a1/