Stability Islands in Domains of Separatrix Crossings in Slow--Fast Hamiltonian Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 243-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-degrees-of-freedom Hamiltonian system with one degree of freedom corresponding to fast motion and the other corresponding to slow motion. The ratio of typical velocities of changes of the slow and fast variables is the small parameter $\varepsilon$ of the problem. At frozen values of the slow variables, there is a eparatrix on the phase plane of the fast variables, and there is a region in the phase space (the domain of separatrix crossings) where the projections of phase points onto the plane of the fast variables repeatedly cross the separatrix in the process of evolution of the slow variables. Under a certain symmetry condition, we prove the existence of many (of order $1/\varepsilon$) stable periodic trajectories in the domain of separatrix crossings. Each of these trajectories is surrounded by a stability island whose measure is estimated from below by a value of order $\varepsilon$. So, the total measure of the stability islands is estimated from below by a value independent of $\varepsilon$. The proof is based on an analysis of asymptotic formulas for the corresponding Poincaré map.
@article{TM_2007_259_a13,
     author = {A. A. Vasil'ev and A. I. Neishtadt and C. Sim\'o and D. V. Treschev},
     title = {Stability {Islands} in {Domains} of {Separatrix} {Crossings} in {Slow--Fast} {Hamiltonian} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {243--255},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_259_a13/}
}
TY  - JOUR
AU  - A. A. Vasil'ev
AU  - A. I. Neishtadt
AU  - C. Simó
AU  - D. V. Treschev
TI  - Stability Islands in Domains of Separatrix Crossings in Slow--Fast Hamiltonian Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 243
EP  - 255
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_259_a13/
LA  - ru
ID  - TM_2007_259_a13
ER  - 
%0 Journal Article
%A A. A. Vasil'ev
%A A. I. Neishtadt
%A C. Simó
%A D. V. Treschev
%T Stability Islands in Domains of Separatrix Crossings in Slow--Fast Hamiltonian Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 243-255
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_259_a13/
%G ru
%F TM_2007_259_a13
A. A. Vasil'ev; A. I. Neishtadt; C. Simó; D. V. Treschev. Stability Islands in Domains of Separatrix Crossings in Slow--Fast Hamiltonian Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 243-255. http://geodesic.mathdoc.fr/item/TM_2007_259_a13/

[1] Büchner J., Zelenyi L. M., “Regular and chaotic charged particle motion in magnetotaillike field reversals. 1: Basic theory of trapped motion”, J. Geophys. Res. A, 94:9 (1989), 11821–11842 | DOI

[2] Gurevich A. V., Tsedilina E. E., Sverkhdalnee rasprostranenie korotkikh radiovoln, Nauka, M., 1979, 268 pp. | Zbl

[3] Wisdom J., “A perturbative treatment of motion near the 3/1 commensurability”, Icarus., 63:2 (1985), 272–289 | DOI

[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974, 432 pp. | MR

[5] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, 2-e izd., Editorial URSS, M., 2002, 414 pp.

[6] Arnold V. I., “Malye znamenateli i problemy ustoichivosti v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR

[7] Bruhwiler D. L., Cary J. R., “Diffusion of particles in a slowly modulated wave”, Physica D, 40:2 (1989), 265–282 | DOI | MR | Zbl

[8] Neishtadt A. I., Sidorenko V. V., “Wisdom system: dynamics in the adiabatic approximation”, Celest. Mech. and Dyn. Astron., 90 (2004), 307–330 | DOI | MR | Zbl

[9] Elskens Y., Escande D. F., “Slowly pulsating separatrices sweep homoclinic tangles where islands must be small: an extension of classical adiabatic theory”, Nonlinearity, 4:3 (1991), 615–667 | DOI | MR | Zbl

[10] Neishtadt A. I., Sidorenko V. V., Treschev D. V., “Stable periodic motions in the problem on passage through a separatrix”, Chaos, 7 (1997), 2–11 | DOI | MR | Zbl

[11] Neishtadt A. I., Sidorenko V. V., Treschev D. V., “Ob ostrovakh ustoichivosti v oblasti perekhodov cherez separatrisu”, Nelineinaya mekhanika, eds. V. M. Matrosov, V. V. Rumyantsev, A. V. Karapetyan, Fizmatlit, M., 2001, 192–203

[12] Timofeev A. V., “K voprosu o postoyanstve adiabaticheskogo invarianta pri izmenenii kharaktera dvizheniya”, ZhETF, 75:10 (1978), 1303–1308 | MR

[13] Cary J. R., Escande D. F., Tennyson J. L., “Adiabatic-invariant change due to separatrix crossing”, Phys. Rev. A, 34 (1986), 4256–4275 | DOI

[14] Neishtadt A. I., “Ob izmenenii adiabaticheskogo invarianta pri perekhode cherez separatrisu”, Fizika plazmy, 12:8 (1986), 992–1000

[15] Cary J. R., Skodje R. T., “Phase change between separatrix crossings”, Physica D, 36 (1989), 287–316 | DOI | MR | Zbl

[16] Neishtadt A. I., “Ob izmenenii adiabaticheskogo invarianta pri perekhode cherez separatrisu v sistemakh s dvumya stepenyami svobody”, PMM, 51:5 (1987), 750–757 | MR

[17] Neishtadt A. I., Vasiliev A. A., “Phase change between separatrix crossings in slow–fast Hamiltonian systems”, Nonlinearity, 18:3 (2005), 1393–1406 | DOI | MR | Zbl

[18] Neishtadt A. I., Simó C., Treschev D. V., Vasiliev A. A., “Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow–fast systems”, Discr. and Contin. Dyn. Syst. (to appear)

[19] Tal F.A., Vanden-Eijnden E., “Transition state theory and dynamical corrections in ergodic systems”, Nonlinearity, 19:2 (2006), 501–509 | DOI | MR | Zbl