On the Conditions under Which a~Satellite Orbit Intersects the Surface of a~Central Body of Finite Radius in the Restricted Double-Averaged Three-Body Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 156-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the applied problem of choosing long-living orbits of artificial Earth satellites whose evolution under the influence of gravitational perturbation from the Moon and the Sun may result in the collision of the satellite with the central body, as was shown by M. L. Lidov for the well-known example of “Vertical Moon.” We use solutions of the completely integrable system of evolution equations obtained by Lidov in 1961 by averaging twice the spatial circular restricted three-body problem in the Hill approximation. In order to apply the integrability of this problem in practice, we study the foliation of the manifold of levels of first integrals and the change of motion under crossing the bifurcation manifolds separating the foliated cells. As a result, we describe the manifold of initial conditions under which the orbit evolution leads to an inevitable collision of the satellite with the central body. We also find a lower bound for the practical applicability of the results, which is determined by the presence of gravitational perturbations caused by a polar flattening of the central body.
@article{TM_2007_259_a10,
     author = {V. I. Prokhorenko},
     title = {On the {Conditions} under {Which} {a~Satellite} {Orbit} {Intersects} the {Surface} of {a~Central} {Body} of {Finite} {Radius} in the {Restricted} {Double-Averaged} {Three-Body} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {156--173},
     publisher = {mathdoc},
     volume = {259},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_259_a10/}
}
TY  - JOUR
AU  - V. I. Prokhorenko
TI  - On the Conditions under Which a~Satellite Orbit Intersects the Surface of a~Central Body of Finite Radius in the Restricted Double-Averaged Three-Body Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 156
EP  - 173
VL  - 259
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_259_a10/
LA  - ru
ID  - TM_2007_259_a10
ER  - 
%0 Journal Article
%A V. I. Prokhorenko
%T On the Conditions under Which a~Satellite Orbit Intersects the Surface of a~Central Body of Finite Radius in the Restricted Double-Averaged Three-Body Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 156-173
%V 259
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_259_a10/
%G ru
%F TM_2007_259_a10
V. I. Prokhorenko. On the Conditions under Which a~Satellite Orbit Intersects the Surface of a~Central Body of Finite Radius in the Restricted Double-Averaged Three-Body Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 2, Tome 259 (2007), pp. 156-173. http://geodesic.mathdoc.fr/item/TM_2007_259_a10/

[1] Lidov M. L., “Evolyutsiya orbit iskusstvennykh sputnikov planet pod deistviem gravitatsionnykh vozmuschenii vneshnikh tel”, Iskusstvennye sputniki Zemli, 1961, no. 8, 5–45 | Zbl

[2] Lidov M. L., “O priblizhennom analize evolyutsii orbit iskusstvennykh sputnikov”, Problemy dvizheniya iskusstvennykh nebesnykh tel, Dokl. na konf. po obschim i prikladnym voprosam teoreticheskoi astronomii, (Moskva, 1961 g.), Astron. Sovet AN SSSR, M., 1963, 119–134

[3] Moiseev N. D., “O nekotorykh osnovnykh uproschennykh skhemakh nebesnoi mekhaniki, poluchaemykh pri pomoschi osredneniya ogranichennoi krugovoi problemy trekh tochek”, Tr. GAISh, 15, ch. 1 (1945), 100–117

[4] Gordeeva Yu. F., “Zavisimost elementov ot vremeni v dolgoperiodicheskikh kolebaniyakh v ogranichennoi zadache trekh tel”, Kosmich. issled., 6:4 (1968), 536–540

[5] Vashkovyak M. A., “Ob evolyutsii orbit dalekikh sputnikov Urana”, Pisma v AZh, 25:7 (1999), 554–560

[6] Arnold V. I., Obyknovennye differentsialnye uravneniya, 4-e izd., Udm. gos. un-t, Izhevsk, 2000, 367 pp. | MR

[7] Lidov M. L., Yarskaya M. V., “Integriruemye sluchai v zadache ob evolyutsii orbity sputnika pri sovmestnom vliyanii vneshnego tela i netsentralnosti polya planety”, Kosmich. issled., 12:2 (1974), 155–170

[8] Okhotsimskii D. E., Eneev T. M., Taratynova G. P., “Opredelenie vremeni suschestvovaniya iskusstvennogo sputnika Zemli i issledovanie vekovykh vozmuschenii ego orbity”, UFN, 63:1a (1957), 33–50

[9] Proskurin V. F., Batrakov Yu. V., “Vozmuscheniya v dvizhenii iskusstvennykh sputnikov, vyzvannye szhatiem Zemli”, Byul. ITA AN SSSR, 7:7 (1960), 537–548 | Zbl

[10] Nazirov R. R., Prokhorenko V. I., Sheikhet A. I., “Retrospektivnyi geometricheskii analiz dolgoperiodicheskoi evolyutsii orbit i vremeni ballisticheskogo suschestvovaniya ISZ serii Prognoz”, Kosmich. issled., 40:5 (2002), 538–554

[11] Vashkovyak M. A., “Postroenie semeistv periodicheski evolyutsioniruyuschikh orbit v oblasti primerno ravnogo vliyaniya polyarnogo szhatiya planety i prityazheniya vneshnego tela”, Pisma v AZh, 23:3 (1997), 229–235

[12] Prokhorenko V. I., “Dolgovremennaya evolyutsiya orbit ISZ pod vliyaniem gravitatsionnykh vozmuschenii, obuslovlennykh szhatiem Zemli, s uchetom vozmuschenii ot vneshnikh tel”, Izv. vuzov. Fizika, 2006, no. 2. Prilozhenie, 63–73 | MR