Thom Polynomials for Maps of Curves with Isolated Singularities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 1, Tome 258 (2007), pp. 93-106

Voir la notice de l'article provenant de la source Math-Net.Ru

Thom (residual) polynomials in characteristic classes are used in the analysis of the geometry of function spaces. They serve as a tool for describing the classes that are Poincaré dual to subvarieties of functions with singularities of prescribed types. We give explicit universal expressions for residual polynomials in spaces of functions on complex curves that have isolated singularities and multisingularities, in terms of few characteristic classes. These expressions lead to a partial description of a stratification of Hurwitz spaces.
@article{TM_2007_258_a8,
     author = {M. E. Kazarian and S. K. Lando},
     title = {Thom {Polynomials} for {Maps} of {Curves} with {Isolated} {Singularities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {93--106},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_258_a8/}
}
TY  - JOUR
AU  - M. E. Kazarian
AU  - S. K. Lando
TI  - Thom Polynomials for Maps of Curves with Isolated Singularities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 93
EP  - 106
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_258_a8/
LA  - ru
ID  - TM_2007_258_a8
ER  - 
%0 Journal Article
%A M. E. Kazarian
%A S. K. Lando
%T Thom Polynomials for Maps of Curves with Isolated Singularities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 93-106
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_258_a8/
%G ru
%F TM_2007_258_a8
M. E. Kazarian; S. K. Lando. Thom Polynomials for Maps of Curves with Isolated Singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 1, Tome 258 (2007), pp. 93-106. http://geodesic.mathdoc.fr/item/TM_2007_258_a8/