New Cases of Logarithmic Equivalence of Welschinger and Gromov--Witten Invariants
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 1, Tome 258 (2007), pp. 70-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $\mathbb P^1\times\mathbb P^1$ equipped with the complex conjugation $(x,y)\mapsto(\bar y,\bar x)$ and blown up in at most two real or two complex conjugate points. For these four surfaces we prove the logarithmic equivalence of Welschinger and Gromov–Witten invariants.
@article{TM_2007_258_a6,
     author = {I. V. Itenberg and V. M. Kharlamov and E. I. Shustin},
     title = {New {Cases} of {Logarithmic} {Equivalence} of {Welschinger} and {Gromov--Witten} {Invariants}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {70--78},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_258_a6/}
}
TY  - JOUR
AU  - I. V. Itenberg
AU  - V. M. Kharlamov
AU  - E. I. Shustin
TI  - New Cases of Logarithmic Equivalence of Welschinger and Gromov--Witten Invariants
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 70
EP  - 78
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_258_a6/
LA  - en
ID  - TM_2007_258_a6
ER  - 
%0 Journal Article
%A I. V. Itenberg
%A V. M. Kharlamov
%A E. I. Shustin
%T New Cases of Logarithmic Equivalence of Welschinger and Gromov--Witten Invariants
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 70-78
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_258_a6/
%G en
%F TM_2007_258_a6
I. V. Itenberg; V. M. Kharlamov; E. I. Shustin. New Cases of Logarithmic Equivalence of Welschinger and Gromov--Witten Invariants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 1, Tome 258 (2007), pp. 70-78. http://geodesic.mathdoc.fr/item/TM_2007_258_a6/