New Cases of Logarithmic Equivalence of Welschinger and Gromov--Witten Invariants
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 1, Tome 258 (2007), pp. 70-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $\mathbb P^1\times\mathbb P^1$ equipped with the complex conjugation $(x,y)\mapsto(\bar y,\bar x)$ and blown up in at most two real or two complex conjugate points. For these four surfaces we prove the logarithmic equivalence of Welschinger and Gromov–Witten invariants.
@article{TM_2007_258_a6,
     author = {I. V. Itenberg and V. M. Kharlamov and E. I. Shustin},
     title = {New {Cases} of {Logarithmic} {Equivalence} of {Welschinger} and {Gromov--Witten} {Invariants}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {70--78},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_258_a6/}
}
TY  - JOUR
AU  - I. V. Itenberg
AU  - V. M. Kharlamov
AU  - E. I. Shustin
TI  - New Cases of Logarithmic Equivalence of Welschinger and Gromov--Witten Invariants
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 70
EP  - 78
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_258_a6/
LA  - en
ID  - TM_2007_258_a6
ER  - 
%0 Journal Article
%A I. V. Itenberg
%A V. M. Kharlamov
%A E. I. Shustin
%T New Cases of Logarithmic Equivalence of Welschinger and Gromov--Witten Invariants
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 70-78
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_258_a6/
%G en
%F TM_2007_258_a6
I. V. Itenberg; V. M. Kharlamov; E. I. Shustin. New Cases of Logarithmic Equivalence of Welschinger and Gromov--Witten Invariants. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 1, Tome 258 (2007), pp. 70-78. http://geodesic.mathdoc.fr/item/TM_2007_258_a6/

[1] Itenberg I., Kharlamov V., Shustin E., “Welschinger invariant and enumeration of real rational curves”, Intern. Math. Res. Not., 2003:49 (2003), 2639–2653 | DOI | MR | Zbl

[2] Itenberg I.V., Kharlamov V.M., Shustin E.I., “Logarifmicheskaya ekvivalentnost invariantov Velshenzhe i Gromova–Vittena”, UMN, 59:6 (2004), 85–110 | MR | Zbl

[3] Itenberg I., Kharlamov V., Shustin E., “Logarithmic asymptotics of the genus zero Gromov–Witten invariants of the blown up plane”, Geom. and Topol., 9 (2005), 483–491 | DOI | MR | Zbl

[4] Mikhalkin G., “Counting curves via lattice paths in polygons”, C. R. Math. Acad. Sci. Paris, 336:8 (2003), 629–634 | MR | Zbl

[5] Mikhalkin G., “Enumerative tropical algebraic geometry in $\mathbb R^2$”, J. Amer. Math. Soc., 18:2 (2005), 313–377 | DOI | MR | Zbl

[6] Shustin E., “A tropical approach to enumerative geometry”, Algebra i analiz, 17:2 (2005), 170–214 | MR

[7] Shustin E., “A tropical calculation of the Welschinger invariants of real toric Del Pezzo surfaces”, J. Alg. Geom., 15:2 (2006), 285–322 | MR | Zbl

[8] Shustin E., “Welschinger invariants of toric Del Pezzo surfaces with nonstandard real structures”, Analiz i osobennosti Chast 1: Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Vladimira Igorevicha Arnolda, Tr. MIAN, 258, Nauka, M., 2007, 227–255 | MR

[9] Welschinger J.-Y., “Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry”, C. R. Math. Acad. Sci. Paris, 336:4 (2003), 341–344 | MR | Zbl

[10] Welschinger J.-Y., “Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry”, Invent. math., 162:1 (2005), 195–234 | DOI | MR | Zbl