Invariant Planes, Indices of Inertia, and Degrees of Stability of Linear Dynamic Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 1, Tome 258 (2007), pp. 154-161

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral properties of linear dynamic equations linearized at equilibrium points are analyzed. The analysis involves a search for invariant planes that are uniquely projected onto the configuration plane. In turn, the latter problem reduces to the solution of a quadratic matrix equation of special form. Under certain conditions, the existence of two different solutions is proved by the contraction mapping method. An estimate for the degree of stability is obtained in terms of the index of inertia of potential energy.
@article{TM_2007_258_a10,
     author = {V. V. Kozlov},
     title = {Invariant {Planes,} {Indices} of {Inertia,} and {Degrees} of {Stability} of {Linear} {Dynamic} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {154--161},
     publisher = {mathdoc},
     volume = {258},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_258_a10/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Invariant Planes, Indices of Inertia, and Degrees of Stability of Linear Dynamic Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 154
EP  - 161
VL  - 258
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_258_a10/
LA  - ru
ID  - TM_2007_258_a10
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Invariant Planes, Indices of Inertia, and Degrees of Stability of Linear Dynamic Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 154-161
%V 258
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_258_a10/
%G ru
%F TM_2007_258_a10
V. V. Kozlov. Invariant Planes, Indices of Inertia, and Degrees of Stability of Linear Dynamic Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and singularities. Part 1, Tome 258 (2007), pp. 154-161. http://geodesic.mathdoc.fr/item/TM_2007_258_a10/