Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2007_257_a0, author = {S. M. Aseev and A. V. Kryazhimskii}, title = {The {Pontryagin} {Maximum} {Principle} and {Optimal} {Economic} {Growth} {Problems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {3--271}, publisher = {mathdoc}, volume = {257}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2007_257_a0/} }
TY - JOUR AU - S. M. Aseev AU - A. V. Kryazhimskii TI - The Pontryagin Maximum Principle and Optimal Economic Growth Problems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2007 SP - 3 EP - 271 VL - 257 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2007_257_a0/ LA - ru ID - TM_2007_257_a0 ER -
S. M. Aseev; A. V. Kryazhimskii. The Pontryagin Maximum Principle and Optimal Economic Growth Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, The Pontryagin maximum principle and optimal economic growth problems, Tome 257 (2007), pp. 3-271. http://geodesic.mathdoc.fr/item/TM_2007_257_a0/
[1] Aleksandrov V. V., Boltyanskii V. G., Lemak S. S., Parusnikov N. A., Tikhomirov V. M., Optimizatsiya dinamiki upravlyaemykh sistem, MGU, M., 2000
[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979 | MR
[3] Arnold V. I., “Optimizatsiya v srednem i fazovye perekhody v upravlyaemykh dinamicheskikh sistemakh”, Funkts. analiz i ego pril., 36:2 (2002), 1–11 | MR
[4] Arutyunov A. V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhniki. Matematicheskii analiz, 27, VINITI, M., 1989, 147–235 | MR
[5] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl
[6] Aseev S. M., “Metod gladkikh approksimatsii v teorii neobkhodimykh uslovii optimalnosti dlya differentsialnykh vklyuchenii”, Izv. RAN. Ser. mat., 61:2 (1997), 3–26 | MR | Zbl
[7] Aseev S. M., “Ekstremalnye zadachi dlya differentsialnykh vklyuchenii s fazovymi ogranicheniyami”, Tr. MIAN, 233, 2001, 5–70 | MR
[8] Aseev S. M., Kryazhimskii A. V., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo upravleniya s funktsionalom, zadannym nesobstvennym integralom”, DAN, 394:5 (2004), 583–585 | MR | Zbl
[9] Aseev S. M., Kryazhimskii A. V., Tarasev A. M., “Printsip maksimuma Pontryagina i usloviya transversalnosti dlya odnoi zadachi optimalnogo upravleniya na beskonechnom intervale”, Tr. MIAN, 233, 2001, 71–88 | MR | Zbl
[10] Aseev S. M., Smirnov A. I., “Neobkhodimye usloviya optimalnosti pervogo poryadka dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Nelineinaya dinamika i upravlenie, no. 4, eds. S. V. Emelyanov, S. K. Korovin, Fizmatlit, M., 2004, 179–204
[11] Bobylev N. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Magistr, M., 1998
[12] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[13] Gnedenko B. V., Kurs teorii veroyatnostei, URSS, M., 2001
[14] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[15] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[16] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[17] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR
[18] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974 | MR
[19] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[20] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Mosk. un-ta. Ser. mat., mekh., astron., fiz., khim., 1959, no. 2, 25–32 | MR | Zbl
[21] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[22] Aghion P., Howitt P., Endogenous growth theory, MIT Press, Cambridge, MA, 1998
[23] Arrow K. J., “Applications of control theory to economic growth”, Mathematics of the Decision Sciences, Pt. 2, Amer. Math. Soc., Providence, RI, 1968, 85–119 | MR
[24] Arrow K. J., Kurz M., Public investment, the rate of return, and optimal fiscal policy, J. Hopkins Univ. Press, Baltimore, MD, 1970
[25] Arutyunov A. V., Aseev S. M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control and Optim., 35 (1997), 930–952 | DOI | MR | Zbl
[26] Aseev S. M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR | Zbl
[27] Aseev S., Hutschenreiter G., Kryazhimskii A., A dynamic model of optimal allocation of resources to R, IIASA Interim Rept. IR-02-016, Laxenburg, Austria, 2002
[28] Aseev S., Hutschenreiter G., Kryazhimskii A., Optimal investment in R with international knowledge spillovers, WIFO Working Paper No 175, 2002
[29] Aseev S. M., Hutschenreiter G., Kryazhimskii A. V., “A dynamical model of optimal investment in R”, J. Math. Sci., 126:6 (2005), 1495–1535 | DOI | MR | Zbl
[30] Aseev S., Hutschenreiter G., Kryazhimskiy A., Lysenko A., “A dynamical model of optimal investment in research and development with international knowledge spillovers”, Math. and Comput. Model. Dyn. Syst., 11:2 (2005), 125–123 | DOI | MR
[31] Aseev S., Kryazhimskii A., The Pontryagin maximum principle for infinite-horizon optimal controls, IIASA Interim Rept. IR-03-013, Laxenburg, Austria, 2003
[32] Aseev S. M., Kryazhimskiy A. V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control and Optim., 43 (2004), 1094–1119 | DOI | Zbl
[33] Aseev S., Kryazhimskii A., Tarasyev A., First order necessary optimality conditions for a class of infinite horizon optimal control problems, IIASA Interim Rept. IR-01-007, Laxenburg, Austria, 2001
[34] Aseev S. M., Kryazhimskii A. V., Tarasyev A. M., “The Pontryagin maximum principle and transversality conditions for a class of optimal economic growth problems”, Nonlinear Control Systems, 2001, Proc. 5th IFAC Symp., v. 1 (St.-Petersburg, Russia, July 4–6, 2001), Elsevier, New York, London, 2001, 71–76 | MR
[35] Aubin J. P., Clarke F. H., “Shadow prices and duality for a class of optimal control problems”, SIAM J. Control and Optim., 17 (1979), 567–586 | DOI | MR | Zbl
[36] Bagliano F.-C., Bertola G., Models for dynamic macroeconomics, Oxford Univ. Press, New York, 2004 | MR | Zbl
[37] Balder E. J., “An existence result for optimal economic growth problems”, J. Math. Anal. and Appl., 95 (1983), 195–213 | DOI | MR | Zbl
[38] Baratchart L., Chyba M., Pomet J.-B., “A Grobman–Hartnman theorem for control systems”, J. Dyn. and Diff. Equat., 19:1 (2007), 75–107 | DOI | MR | Zbl
[39] Barro R. J., Sala-i-Martin X., Economic growth, McGraw Hill, New York, 1995
[40] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, NJ, 1957 | MR
[41] Benassy J.-P., “Is there always too little research in endogenous growth with expanding product variety?”, Eur. Econ. Rev., 42 (1998), 61–69 | DOI
[42] Benveniste L. M., Scheinkman J. A., “Duality theory for dynamic optimization models of economics: the continuous time case”, J. Econ. Theory, 27 (1982), 1–19 | DOI | MR | Zbl
[43] Blot J., Michel P., “First-order necessary conditions for infinite-horizon variational problems”, J. Optim. Theory and Appl., 88:2 (1996), 339–364 | DOI | MR | Zbl
[44] Borisov V. F., Hutschenreiter G., Kryazhimskii A. V., “Asymptotic growth rates in knowledge-exchanging economies”, Ann. Oper. Res., 89 (1999), 61–73 | DOI | MR | Zbl
[45] Carlson D. A., Haurie A. B., Leizarowitz A., Infinite horizon optimal control. Deterministic and stochastic systems, Springer, Berlin, 1991 | Zbl
[46] Cass D., “Optimum growth in an aggregative model of capital accumulation”, Rev. Econ. Stud., 32 (1965), 233–240 | DOI
[47] Cesari L., Asymptotic behavior and stability problems in ordinary differential equations, Springer, Berlin, 1959 | MR | Zbl
[48] Cesari L., Optimization — theory and applications. Problems with ordinary differential equations, Springer, New York, 1983 | MR
[49] Chiang A. C., Elements of dynamic optimization, McGraw Hill, Singapore, 1992
[50] Clarke F. H., Optimization and nonsmooth analysis, J. Wiley, New York, 1983 | MR
[51] Dixit A. K., Pyndyck R. S., Investment under uncertainty, Princeton Univ. Press, Princeton, NJ, 1994
[52] Dixit A. K., Stiglitz J., “Monopolistic competition and optimum product diversity”, Amer. Econ. Rev., 67 (1977), 297–308
[53] Dorfman R., “An economic interpretation of optimal control theory”, Amer. Econ. Rev., 59 (1969), 817–831
[54] Ekeland I., “Some variational problems arising from mathematical economics”, Mathematical economics, Lect. Notes Math., 1330, Springer, Berlin, 1988, 1–18 | MR
[55] Ethier W. J., “National and international returns to scale in the modern theory of international trade”, Amer. Econ. Rev., 72 (1982), 389–405
[56] Gamkrelidze R. V., Principles of optimal control theory, Plenum Press, New York, London, 1978 | MR | Zbl
[57] Grossman G. M., Helpman E., Innovation and growth in the global economy, MIT Press, Cambridge, MA, 1991
[58] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42 (1974), 267–272 | DOI | MR | Zbl
[59] Hartman P., Ordinary differential equations, J. Wiley Sons, New York, 1964 | MR | Zbl
[60] Hirsch M. W., Smale S., Differential equations, dynamical systems, and linear algebra, Acad. Press, London, 1974 | MR
[61] Hutschenreiter G., Kaniovski Yu. M., Kryazhimskii A. V., Endogenous growth, absorptive capacities, and international R spillovers, IIASA Work. Paper WP-95-092, Laxenburg, Austria, 1995
[62] Inada K., “On a two-sector model of economic growth: comments and a generalization”, Rev. Econ. Stud., 30:2 (1963), 119–127 | DOI
[63] Intriligator M. D., Mathematical optimization and economic theory, Prentice-Hall, Englewood Cliffs, NJ, 1971 | MR
[64] Kamihigashi T., “Necessity of transversality conditions for infinite horizon problems”, Econometrica, 69 (2001), 995–1012 | DOI | MR | Zbl
[65] Koopmans T. C., “Objectives, constraints, and outcomes in optimal growth models”, Econometrica, 35 (1967), 1–15 | DOI | MR | Zbl
[66] Liapounoff A., Problème général de la stabilité du mouvement, Ann. Math. Stud., 17, Princeton Univ. Press, Princeton, NJ, 1947 | MR | Zbl
[67] Leung S. F., “Transversality condition and optimality in a class of infinite horizon continuous time economic models”, J. Econ. Theory, 54 (1991), 224–233 | DOI | MR | Zbl
[68] Lorenz H.-W., Nonlinear dynamical economics and chaotic motion, Lect. Notes Econ. and Math. Syst., 334, Springer, Berlin, 1989 | MR | Zbl
[69] Mangasarian O. L., “Sufficient conditions for the optimal control of nonlinear systems”, SIAM J. Control, 4 (1966), 139–152 | DOI | MR | Zbl
[70] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50 (1982), 975–985 | DOI | MR | Zbl
[71] Nordhaus W. D., Managing the global commons. The economics of climate change, MIT Press, Cambridge, MA, 1994
[72] Ramsey F. P., “A mathematical theory of saving”, Econ. J., 38 (1928), 543–559 | DOI
[73] Romer P. M., “Endogenous technological change”, J. Polit. Econ., 98:5 (1990), S71–S102, Pt. 2 | DOI
[74] Samuelson P. A., “Paul Douglas's measurement of production functions and marginal productivities”, J. Polit. Econ., 87:5 (1979), 923–939 | DOI
[75] Seierstad A., “Necessary conditions for nonsmooth, infinite-horizon, optimal control problems”, J. Optim. Theory and Appl., 103:1 (1999), 201–229 | DOI | MR | Zbl
[76] Seierstad A., Sydsæter K., Optimal control theory with economic applications, North-Holland, Amsterdam, 1987 | MR | Zbl
[77] Sethi S. P., Thompson G. L., Optimal control theory: applications to management science and economics, Kluwer, Dordrecht, 2000 | MR | Zbl
[78] Shell K., “Applications of Pontryagin's maximum principle to economics”, Mathematical systems theory and economics, 1, Lect. Notes Oper. Res. and Math. Econ., 11, Springer, Berlin, 1969, 241–292 | MR
[79] Smirnov G. V., “Transversality condition for infinite-horizon problems”, J. Optim. Theory and Appl., 88:3 (1996), 671–688 | DOI | MR | Zbl
[80] Solow R. M., Growth theory: an exposition, Oxford Univ. Press, New York, 1970
[81] Stern L. E., “Criteria of optimality in the infinite-time optimal control problem”, J. Optim. Theory and Appl., 44:3 (1984), 497–508 | DOI | MR | Zbl
[82] Weitzman M. L., Income, wealth, and the maximum principle, Harvard Univ. Press, Cambridge, MA, 2003
[83] Ye J. J., “Nonsmooth maximum principle for infinite-horizon problems”, J. Optim. Theory and Appl., 76:3 (1993), 485–500 | DOI | MR | Zbl