Dynamical Systems with Multivalued Integrals on a Torus
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 201-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of the solutions to differential equations on the torus with a complete set of multivalued first integrals are considered, including the existence of an invariant measure, the averaging principle, and the infiniteness of the number of zeros for integrals of zero-mean functions along trajectories. The behavior of systems with closed trajectories of large period is studied. It is shown that a generic system acquires a limit mixing property as the periods tend to infinity.
@article{TM_2007_256_a9,
     author = {V. V. Kozlov},
     title = {Dynamical {Systems} with {Multivalued} {Integrals} on a {Torus}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {201--218},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a9/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Dynamical Systems with Multivalued Integrals on a Torus
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 201
EP  - 218
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a9/
LA  - ru
ID  - TM_2007_256_a9
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Dynamical Systems with Multivalued Integrals on a Torus
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 201-218
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a9/
%G ru
%F TM_2007_256_a9
V. V. Kozlov. Dynamical Systems with Multivalued Integrals on a Torus. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 201-218. http://geodesic.mathdoc.fr/item/TM_2007_256_a9/

[1] Poincaré H., Calcul des probabilités, Gauthier–Villars, Paris, 1912 ; Puankare A., Teoriya veroyatnostei, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 1999 | Zbl

[2] Kolmogorov A.N., “O dinamicheskikh sistemakh s integralnym invariantom na tore”, DAN SSSR, 93:5 (1953), 763–766 | MR | Zbl

[3] Kolmogorov A.N., “Obschaya teoriya dinamicheskikh sistem i klassicheskaya mekhanika”, Mezhdunarodnyi matematicheskii kongress v Amsterdame, 1954 g., Obzor. dokl., Fizmatgiz, M., 1961, 187–208 | MR

[4] Arnold V.I., “Poliintegriruemye potoki”, Algebra i analiz, 4:6 (1992), 54–62 | MR

[5] Kozlov V.V., “Symmetries and regular behavior of Hamiltonian systems”, Chaos, 6:1 (1996), 1–5 | DOI | MR | Zbl

[6] Kozlov V.V., Moshchevitin N.G., “Diffusion in Hamiltonian systems”, Chaos, 8:1 (1998), 245–247 | DOI | MR | Zbl

[7] Nambu Y., “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7 (1973), 2405–2412 | DOI | MR | Zbl

[8] Novikov S.P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[9] Dynnikov I.A., Novikov S.P., “Topologiya kvaziperiodicheskikh funktsii na ploskosti”, UMN, 60:1 (2005), 3–28 | MR | Zbl

[10] Siegel C.L., “Note on differential equations on the torus”, Ann. Math., 46:3 (1945), 423–428 | DOI | MR | Zbl

[11] Kozlov V.V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980

[12] Herman M.R., “Exemples de flots hamiltoniens dont aucune perturbation en topologie $C^\infty$ n'a d'orbites périodiques sur un ouvert de surfaces d'énergies”, C. r. Acad. sci. Paris. Sér. 1, 312:13 (1991), 989–994 | MR | Zbl

[13] Anosov D.V., “Ob additivnom funktsionalnom gomologicheskom uravnenii, svyazannom s ergodicheskim povorotom okruzhnosti”, Izv. AN SSSR. Ser. mat., 37:6 (1973), 1259–1274 | MR | Zbl

[14] Gordon A.Ya., “Dostatochnoe uslovie nerazreshimosti additivnogo gomologicheskogo uravneniya, svyazannogo s ergodicheskim povorotom okruzhnosti”, Funkts. analiz i ego pril., 9:4 (1975), 71–72 | MR | Zbl

[15] Stepin A.M., “O gomologicheskom uravnenii teorii dinamicheskikh sistem”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Izd. YarGU, Yaroslavl, 1982, 106–117

[16] Herman M.R., “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Publ. Math. IHES, 49 (1979), 5–233 | MR | Zbl

[17] Rozhdestvenskii A.V., “Ob additivnom kogomologicheskom uravnenii i zamene vremeni v lineinom potoke na tore s diofantovym vektorom chastot”, Mat. sb., 195:5 (2004), 115–156 | MR | Zbl

[18] Bohl P., “Über eine Differentialgleichung der Störungstheorie”, J. reine und angew. Math., 131:4 (1906), 268–321 | Zbl

[19] Kozlov V.V., “Ob integralakh kvaziperiodicheskikh funktsii”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1978, no. 1, 106–115 | MR

[20] Katok A.B., “Spektralnye svoistva dinamicheskikh sistem s integralnym invariantom na tore”, Funkts. analiz i ego pril., 1:4 (1967), 46–56 | MR | Zbl

[21] Kochergin A.V., “Ob otsutstvii peremeshivaniya u spetsialnykh potokov nad povorotom okruzhnosti i u potokov na dvumernom tore”, DAN SSSR 1972, 205:3, 515–518 | Zbl

[22] Arnold V.I., “Topologicheskie i ergodicheskie svoistva zamknutykh 1-form s nesoizmerimymi periodami”, Funkts. analiz i ego pril., 25:2 (1991), 1–12 | MR

[23] Sinai Ya.G., Khanin K.M., “Peremeshivanie nekotorykh klassov spetsialnykh potokov nad povorotom okruzhnosti”, Funkts. analiz i ego pril., 26:3 (1992), 1–21 | MR | Zbl

[24] Fayad B.R., “Analytic mixing reparametrizations of irrational flows”, Ergod. Theory and Dyn. Syst., 22:2 (2002), 437–468 | DOI | MR | Zbl

[25] Kozlov V.V., “Diffuziya v sistemakh s integralnym invariantom na tore”, DAN, 381:5 (2001), 596–598 | MR | Zbl

[26] Poincaré H., Les méthodes nouvelles de la Mécanique céleste, v. 1, Gauthier–Villars, Paris, 1892 ; Puankare A., Izbr. tr. T. 1: Novye metody nebesnoi mekhaniki, Nauka, M., 1971 | Zbl

[27] Moschevitin N.G., “O vozvraschaemosti integrala gladkoi trekhchastotnoi uslovno periodicheskoi funktsii”, Mat. zametki, 58:5 (1995), 723–735 | MR | Zbl

[28] Halász G., “Remarks on the remainder in Birkhoff's ergodic theorem”, Acta math. Acad. sci. Hung., 28:3–4 (1976), 389–395 | DOI | MR | Zbl

[29] Colin de Verdière Y., “Nombre de points entiers dans une famille homothétique de domaines de $\mathbb R$”, Ann. Sci. Ecole Norm. Super. Sér. 4, 10:4 (1977), 559–575 | MR