Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2007_256_a8, author = {A. G. Kachurovskii}, title = {General {Theories} {Unifying} {Ergodic} {Averages} and {Martingales}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {172--200}, publisher = {mathdoc}, volume = {256}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a8/} }
A. G. Kachurovskii. General Theories Unifying Ergodic Averages and Martingales. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 172-200. http://geodesic.mathdoc.fr/item/TM_2007_256_a8/
[1] Vershik A.M., “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl
[2] Vershik A.M., Kachurovskii A.G., Skorosti skhodimosti v ergodicheskikh teoremakh dlya lokalno konechnykh grupp i obraschennye martingaly, Preprint POMI RAN 2/1998, 6 pp. ; Диф. уравнения и процессы управления, No 1, 1999, 19–26 | Zbl | MR
[3] Danford N., Shvarts Dzh., Lineinye operatory: Obschaya teoriya, Izd-vo inostr. lit., M., 1962
[4] Dub Dzh.L., Veroyatnostnye protsessy, Izd-vo inostr. lit., M., 1956 | MR
[5] Ibragimov I.A., Linnik Yu.V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[6] Ivanov V.V., “Geometricheskie svoistva monotonnykh funktsii i veroyatnosti sluchainykh kolebanii”, Sib. mat. zhurn., 37:1 (1996), 117–150 | MR | Zbl
[7] Kachurovskii A.G., “Skorosti skhodimosti v ergodicheskikh teoremakh”, UMN, 51:4 (1996), 73–124 | MR
[8] Kachurovskii A.G., “Martingalno-ergodicheskaya teorema”, Mat. zametki, 64:2 (1998), 311–314 | MR | Zbl
[9] Kachurovskii A.G., “O skhodimosti srednikh v ergodicheskoi teoreme dlya grupp $\mathbb Z^d$”, Zap. nauch. sem. POMI, 256 (1999), 121–128 | MR
[10] Kornfeld I.P., Sinai Ya.G., Fomin S.V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[11] Prigozhin I., Stengers I., Poryadok iz khaosa, Progress, M., 1986
[12] Rokhlin V.A., “Ob osnovnykh ponyatiyakh teorii mery”, Mat. sb., 25:1 (1949), 107–150 | Zbl
[13] Stepin A.M., “Entropiinyi invariant ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Funkts. analiz i ego pril., 5:3 (1971), 80–84 | MR | Zbl
[14] Khalmosh P., Lektsii po ergodicheskoi teorii, Izd-vo inostr. lit., M., 1959
[15] Khardi G., Raskhodyaschiesya ryady, Izd-vo inostr. lit., M., 1951
[16] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, t. 1, 2, Mir, M., 1975
[17] Shiryaev A.N., Veroyatnost, Nauka, M., 1989 | MR
[18] Argiris G., Rosenblatt J.M., “Forcing divergence when the supremum is not integrable”, Positivity, 10:2 (2006), 261–284 | DOI | MR | Zbl
[19] Bellow A., “For the historical record”, Measure theory (Oberwolfach, 1983), Lect. Notes Math., 1089, Springer, Berlin, 1984, 271 | MR
[20] Bishop E., “An upcrossing inequality with applications”, Michigan Math. J., 13:1 (1966), 1–13 | DOI | MR | Zbl
[21] Blackwell D., Dubins L.E., “A converse to the dominated convergence theorem”, Ill. J. Math., 7:3 (1963), 508–514 | MR | Zbl
[22] Blake L.H., “Martingales, the smoothing index and ergodic theory”, Stoch. Processes and Appl., 4:2 (1976), 149–155 | DOI | MR | Zbl
[23] Blum J., Hanson D., “On the mean ergodic theorem for subsequences”, Bull. Amer. Math. Soc., 66:4 (1960), 308–311 | DOI | MR | Zbl
[24] Bourgain J., “Pointwise ergodic theorems for arithmetic sets”, Publ. Math. IHES, 69 (1989), 5–45 | MR | Zbl
[25] Bray G., “Théoremes ergodiques de convergence en moyenne”, J. Math. Anal. and Appl., 25:3 (1969), 471–502 | DOI | MR | Zbl
[26] Burkholder D.L., “Distribution function inequalities for martingales”, Ann. Probab., 1:1 (1973), 19–42 | DOI | MR | Zbl
[27] Burkholder D.L., “Successive conditional expectations of an integrable function”, Ann. Math. Stat., 33:3 (1962), 887–893 | DOI | MR | Zbl
[28] Derriennic Y., Lin M., “On invariant measures and ergodic theorems for positive operators”, J. Funct. Anal., 13:3 (1973), 252–267 | DOI | MR | Zbl
[29] Dubins L.E., “Rises and upcrossings of nonnegative martingales”, Ill. J. Math., 6:2 (1962), 226–241 | MR | Zbl
[30] Goubran N., “Pointwise inequalities for ergodic averages and reversed martingales”, J. Math. Anal. and Appl., 290:1 (2004), 10–20 | DOI | MR | Zbl
[31] Ionescu Tulcea A., Ionescu Tulcea C., “Abstract ergodic theorems”, Trans. Amer. Math. Soc., 107:1 (1963), 107–124 | DOI | MR
[32] Jerison M., “Martingale formulation of ergodic theorems”, Proc. Amer. Math. Soc., 10:4 (1959), 531–539 | DOI | MR | Zbl
[33] Jones R.L., Kaufman R., Rosenblatt J.M., Wierdl M., “Oscillation in ergodic theory”, Ergod. Theory and Dyn. Syst., 18:4 (1998), 889–935 | DOI | MR | Zbl
[34] Jones R.L., Rosenblatt J.M., Wierdl M., “Counting in ergodic theory”, Canad. J. Math., 51:5 (1999), 996–1019 | MR | Zbl
[35] Kakutani S., “Ergodic theory”, Proc. Intern. Congr. Math. (Cambridge (MA), 1950), 2, Amer. Math. Soc., Providence (RI), 1952, 128–142 | MR
[36] Krengel U., Ergodic theorems, W. de Gruyter, Berlin–New York, 1985 | MR | Zbl
[37] Maker P.T., “The ergodic theorem for a sequence of functions”, Duke Math. J., 6:1 (1940), 27–30 | DOI | MR | Zbl
[38] Neveu J., “Rélations entre la théorie des martingales et la théorie ergodique”, Ann. Inst. Fourier, 15:1 (1965), 31–42 | MR | Zbl
[39] Neveu J., Discrete-parameter martingales, North-Holland, Amsterdam, 1975 | MR | Zbl
[40] Ornstein D., “A remark on the Birkhoff ergodic theorem”, Ill. J. Math., 15:1 (1971), 77–79 | MR | Zbl
[41] Rao M.M., “Abstract martingales and ergodic theory”, Multivariational analysis. III, Proc. Third Intern. Symp. (Wright State Univ., Dayton (Ohio), 1972), Acad. Press, New York, 1973, 45–60 | MR
[42] Rao M.M., Foundations of stochastic analysis, Acad. Press, New York, 1981 | MR
[43] Rota G.-C., “Une théorie unifiee des martingales et des moyennes ergodiques”, C. r. Acad. sci. Paris, 252:14 (1961), 2064–2066 | MR | Zbl
[44] Rota G.-C., “Reynolds operators”, Proc. Symp. Appl. Math., 16 (1964), 70–83 | MR | Zbl
[45] Sucheston L., “On one-parameter proofs of almost sure convergence of multiparameter processes”, Ztschr. Wahrscheinlichkeitsth. und verw. Geb., 63:1 (1983), 43–49 | DOI | MR | Zbl
[46] Vershik A.M., “Amenability and approximation of infinite groups”, Sel. Math. Sov., 2:4 (1982), 311–330 | MR | Zbl
[47] Wiener N., “The ergodic theorem”, Duke Math. J., 5:1 (1939), 1–18 | DOI | MR | Zbl