Hyperbolicity of Periodic Solutions of Functional Differential Equations with Several Delays
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 148-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conditions for the hyperbolicity of periodic solutions to nonlinear functional differential equations in terms of the eigenvalues of the monodromy operator. The eigenvalue problem for the monodromy operator is reduced to a boundary value problem for a system of ordinary differential equations with a spectral parameter. This makes it possible to construct a characteristic function. We prove that the zeros of this function coincide with the eigenvalues of the monodromy operator and, under certain additional conditions, the multiplicity of a zero of the characteristic function coincides with the algebraic multiplicity of the corresponding eigenvalue.
@article{TM_2007_256_a7,
     author = {N. B. Zhuravlev and A. L. Skubachevskii},
     title = {Hyperbolicity of {Periodic} {Solutions} of {Functional} {Differential} {Equations} with {Several} {Delays}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {148--171},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a7/}
}
TY  - JOUR
AU  - N. B. Zhuravlev
AU  - A. L. Skubachevskii
TI  - Hyperbolicity of Periodic Solutions of Functional Differential Equations with Several Delays
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 148
EP  - 171
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a7/
LA  - ru
ID  - TM_2007_256_a7
ER  - 
%0 Journal Article
%A N. B. Zhuravlev
%A A. L. Skubachevskii
%T Hyperbolicity of Periodic Solutions of Functional Differential Equations with Several Delays
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 148-171
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a7/
%G ru
%F TM_2007_256_a7
N. B. Zhuravlev; A. L. Skubachevskii. Hyperbolicity of Periodic Solutions of Functional Differential Equations with Several Delays. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 148-171. http://geodesic.mathdoc.fr/item/TM_2007_256_a7/

[1] Valter Kh.-O., Skubachevskii A.L., “O spektre operatora monodromii dlya medlenno ostsilliruyuschikh periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii”, DAN, 384:4 (2002), 442–445 | MR

[2] Valter Kh.-O., Skubachevskii A.L., “O multiplikatorakh Floke dlya medlenno ostsilliruyuschikh periodicheskikh reshenii nelineinykh funktsionalno-differentsialnykh uravnenii”, Tr. Mosk. mat. o-va, 64 (2003), 3–53 | MR

[3] Valter Kh.-O., Skubachevskii A.L., “O giperbolichnosti bystro ostsilliruyuschikh periodicheskikh reshenii funktsionalno-differentsialnykh uravnenii”, Funkts. analiz i ego pril., 39:1 (2005), 82–85 | MR

[4] Valter Kh.-O., Skubachevskii A.L., “O giperbolichnosti reshenii s irratsionalnymi periodami nekotorykh funktsionalno-differentsialnykh uravnenii”, DAN, 402:2 (2005), 151–154 | MR

[5] Danford N., Shvarts Dzh.T., Lineinye operatory. Ch. 1: Obschaya teoriya, URSS, M., 2004

[6] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[7] Arino O., Chérif A., “More on ordinary differential equations which yield periodic solutions of differential delay equations”, J. Math. Anal. and Appl., 180:2 (1993), 361–385 | DOI | MR | Zbl

[8] Chow S.-N., Diekmann O., Mallet-Paret J., “Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation”, Japan J. Appl. Math., 2 (1985), 433–469 | DOI | MR | Zbl

[9] Chow S.-N., Walther H.-O., “Characteristic multipliers and stability of symmetric periodic solutions of $\dot x(t)=g(x(t-1))$”, Trans. Amer. Math. Soc., 307:1 (1988), 127–142 | DOI | MR | Zbl

[10] Diekmann O., van Gils S.A., Verduyn Lunel S.M., Walther H.-O., Delay equations: Functional-, complex-, and nonlinear analysis, Springer, New York, 1995 | MR | Zbl

[11] Hale J.K., Verduyn Lunel S.M., Introduction to functional differential equations, Springer, New York, 1993 | MR

[12] Kaplan J.L., Yorke J.A., “Ordinary differential equations which yield periodic solutions of differential delay equations”, J. Math. Anal. and Appl., 48:1 (1974), 317–324 | DOI | MR | Zbl

[13] Mallet-Paret J., Sell G.R., “Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions”, J. Diff. Equat., 125 (1996), 385–440 | DOI | MR | Zbl

[14] Walther H.-O., Hyperbolic periodic solutions, heteroclinic connections and transversal homoclinic points in autonomous differential delay equations, Mem. AMS, 402, Amer. Math. Soc., Providence (RI), 1989 | MR

[15] Xie X., “Uniqueness and stability of slowly oscillating periodic solutions of delay equations with unbounded nonlinearity”, J. Diff. Equat., 103 (1993), 350–374 | DOI | MR | Zbl