Minimal Sets of Cartan Foliations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 115-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

A foliation that admits a Cartan geometry as its transversal structure is called a Cartan foliation. We prove that on a manifold $M$ with a complete Cartan foliation $\mathscr F$, there exists one more foliation $(M,\mathscr O)$, which is generally singular and is called an aureole foliation; moreover, the foliations $\mathscr F$ and $\mathscr O$ have common minimal sets. By using an aureole foliation, we prove that for complete Cartan foliations of the type $\mathfrak g/\mathfrak h$ with a compactly embedded Lie subalgebra $\mathfrak h$ in $\mathfrak g$, the closure of each leaf forms a minimal set such that the restriction of the foliation onto this set is a transversally locally homogeneous Riemannian foliation. We describe the structure of complete transversally similar foliations $(M,\mathscr F)$. We prove that for such foliations, there exists a unique minimal set $\mathscr M$, and $\mathscr M$ is contained in the closure of any leaf. If the foliation $(M,\mathscr F)$ is proper, then $\mathscr M$ is a unique closed leaf of this foliation.
@article{TM_2007_256_a6,
     author = {N. I. Zhukova},
     title = {Minimal {Sets} of {Cartan} {Foliations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {115--147},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a6/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Minimal Sets of Cartan Foliations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 115
EP  - 147
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a6/
LA  - ru
ID  - TM_2007_256_a6
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Minimal Sets of Cartan Foliations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 115-147
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a6/
%G ru
%F TM_2007_256_a6
N. I. Zhukova. Minimal Sets of Cartan Foliations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 115-147. http://geodesic.mathdoc.fr/item/TM_2007_256_a6/

[1] Anosov D.V., “Minimalnoe mnozhestvo”, Matematicheskaya entsiklopediya, t. 3, Sov. ents., M., 1982, 690–691

[2] Tamura I., Topologiya sloenii, Mir, M., 1979

[3] Aranson S.Kh., Grines V.Z., “Topologicheskaya klassifikatsiya potokov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 41:1 (1986), 149–169 | MR | Zbl

[4] Levitt G., “Foliations and laminations on hyperbolic surfaces”, Topology, 22:2 (1983), 119–135 | DOI | MR | Zbl

[5] Sacksteder R., “Foliations and pseudogroups”, Amer. J. Math., 87:1 (1965), 79–102 | DOI | MR | Zbl

[6] Beniere J.-C., Meigniez G., “Flows without minimal set”, Ergod. Theory and Dyn. Syst., 19:1 (1999), 21–30 | DOI | MR | Zbl

[7] Inaba T., “An example of a flow on a non-compact surface without minimal set”, Ergod. Theory and Dyn. Syst., 19:1 (1999), 31–33 | DOI | MR | Zbl

[8] Kulikov M.S., “Gruppy tipa Shottki i minimalnye mnozhestva oritsiklicheskogo i geodezicheskogo potokov”, Mat. sb., 195:1 (2004), 37–68 | MR | Zbl

[9] Sacksteder R., “Some properties of foliations”, Ann. Inst. Fourier., 14:1 (1964), 31–35 | MR | Zbl

[10] Blumenthal R., “Cartan submersions and Cartan foliations”, Ill. J. Math., 31 (1987), 327–343 | MR | Zbl

[11] Molino P., Riemannian foliations, Progr. Math., 73, Birkhäuser, Boston, 1988 | MR | Zbl

[12] Zhukova N.I., Malysheva E.L., “O minimalnykh mnozhestvakh rimanovykh sloenii”, Izv. vuzov. Matematika, 1986, no. 9, 38–45

[13] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 1, Nauka, M., 1981

[14] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR

[15] Sharpe R.W., Differential geometry: Cartan's generalization of Klein's Erlangen program, Grad. Texts Math., 166, Springer, New York, 1997 | MR | Zbl

[16] Conlon L., “Transversally parallelizable foliations of codimension two”, Trans. Amer. Math. Soc., 194 (1974), 79–102 | DOI | MR | Zbl

[17] Blumenthal R.A., Hebda J.J., “Ehresmann connections for foliations”, Indiana Univ. Math. J., 33:4 (1984), 597–611 | DOI | MR | Zbl

[18] Reinhart B., “Foliated manifolds with bundle-like metrics”, Ann. Math. Ser. 2, 69 (1959), 119–132 | DOI | MR | Zbl

[19] Molino P., “Propriétés cohomologiques et propriétés topologiques des feuilletages à connexion transverse projetable”, Topology, 12 (1973), 317–325 | DOI | MR | Zbl

[20] Blumenthal R., “Transversely homogeneous foliations”, Ann. Inst. Fourier, 29:4 (1979), 143–158 | MR | Zbl

[21] Dazord P., “Holonomie des feuilletages singuliers”, C. r. Acad. sci. Paris, 298 (1984), 27–30 | MR | Zbl

[22] Epstein D.B.A., Millett K.C., Tischler D., “Leaves without holonomy”, J. London Math. Soc., 16 (1977), 548–552 | DOI | MR | Zbl

[23] Bernshtein I.N., Rozenfeld B.I., “Odnorodnye prostranstva beskonechnomernykh algebr Li i kharakteristicheskie klassy sloenii”, UMN, 28:4 (1973), 103–138 | MR

[24] Zhukova N.I., “Kriterii lokalnoi stabilnosti sloev rimanova sloeniya s osobennostyami”, Izv. vuzov. Matematika, 1992, no. 4, 88–91 | MR | Zbl

[25] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[26] Ferrand J., “The action of conformal transformations on a Riemannian manifold”, Math. Ann., 303:2 (1996), 277–291 | DOI | MR

[27] Zhukova N.I., Chubarov G.V., “Aspects of the qualitative theory of suspended foliations”, J. Difference Equat. and Appl., 9:3–4 (2003), 393–405 | DOI | MR | Zbl