Approximation Theorem for a Nonlinear Control System with Sliding Modes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 102-114

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of validity of the extension of a nonlinear control system by introducing the so-called sliding modes (i.e., by convexifying the set of admissible velocities) in the presence of constraints imposed on the endpoints of trajectories. We prove that a trajectory of the extended system can be approximated by trajectories of the original system if the equality constraints of the extended system are nondegenerate in the first order. The proof is based on a nonlocal estimate for the distance to the zero set of the nonlinear operator corresponding to the extended system, and involves a specific iteration process of corrections.
@article{TM_2007_256_a5,
     author = {A. V. Dmitruk},
     title = {Approximation {Theorem} for a {Nonlinear} {Control} {System} with {Sliding} {Modes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {102--114},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a5/}
}
TY  - JOUR
AU  - A. V. Dmitruk
TI  - Approximation Theorem for a Nonlinear Control System with Sliding Modes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 102
EP  - 114
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a5/
LA  - ru
ID  - TM_2007_256_a5
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%T Approximation Theorem for a Nonlinear Control System with Sliding Modes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 102-114
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a5/
%G ru
%F TM_2007_256_a5
A. V. Dmitruk. Approximation Theorem for a Nonlinear Control System with Sliding Modes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 102-114. http://geodesic.mathdoc.fr/item/TM_2007_256_a5/