Approximation Theorem for a Nonlinear Control System with Sliding Modes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 102-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question of validity of the extension of a nonlinear control system by introducing the so-called sliding modes (i.e., by convexifying the set of admissible velocities) in the presence of constraints imposed on the endpoints of trajectories. We prove that a trajectory of the extended system can be approximated by trajectories of the original system if the equality constraints of the extended system are nondegenerate in the first order. The proof is based on a nonlocal estimate for the distance to the zero set of the nonlinear operator corresponding to the extended system, and involves a specific iteration process of corrections.
@article{TM_2007_256_a5,
     author = {A. V. Dmitruk},
     title = {Approximation {Theorem} for a {Nonlinear} {Control} {System} with {Sliding} {Modes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {102--114},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a5/}
}
TY  - JOUR
AU  - A. V. Dmitruk
TI  - Approximation Theorem for a Nonlinear Control System with Sliding Modes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 102
EP  - 114
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a5/
LA  - ru
ID  - TM_2007_256_a5
ER  - 
%0 Journal Article
%A A. V. Dmitruk
%T Approximation Theorem for a Nonlinear Control System with Sliding Modes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 102-114
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a5/
%G ru
%F TM_2007_256_a5
A. V. Dmitruk. Approximation Theorem for a Nonlinear Control System with Sliding Modes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 102-114. http://geodesic.mathdoc.fr/item/TM_2007_256_a5/

[1] Gamkrelidze R.V., “Optimalnye skolzyaschie rezhimy”, DAN SSSR, 143:6 (1962), 1243–1245 | MR | Zbl

[2] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974 | MR

[3] McShane E.J., “Relaxed controls and variational problems”, SIAM J. Control., 5 (1967), 438–485 | DOI | MR | Zbl

[4] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[5] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[6] Olech C., “Existence theory in optimal control”, Control theory and topics in functional analysis, v. 1, Intern. Atomic Energy Agency, Vienna, 1976, 291–328 | MR | Zbl

[7] Balder E.J., “A general denseness result for relaxed control theory”, Bull. Austral. Math. Soc., 30 (1984), 463–475 | DOI | MR | Zbl

[8] Artstein Z., “Rapid oscillations, chattering systems, and relaxed controls”, SIAM J. Control and Optim., 27:5 (1989), 940–948 | DOI | MR | Zbl

[9] Rosenblueth J.F., Vinter R.B., “Relaxation procedures for time delay systems”, J. Math. Anal. and Appl., 162:2 (1991), 542–563 | DOI | MR | Zbl

[10] Roubicek T., Relaxation in optimization theory and variational calculus, W. de Gruyter, Berlin, 1997 | MR | Zbl

[11] Tolstonogov A.A., Differential inclusions in a Banach space, Kluwer, Dordrecht, 2000 | MR | Zbl

[12] Bulgakov A.I., Vasilyev V.V., “On the theory of functional-differential inclusion of neutral type”, Georgian Math. J., 9:1 (2002), 33–52 | MR | Zbl

[13] Danford N., Shvarts Dzh., Lineinye operatory. T. 1: Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[14] Visintin A., “Strong convergence results related to strict convexity”, Commun. Part. Diff. Equat., 9:5 (1984), 439–466 | DOI | MR | Zbl

[15] Rzezuchowski T., “Strong convergence of selections implied by weak”, Bull. Austral. Math. Soc., 39 (1989), 201–214 | DOI | MR | Zbl

[16] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl

[17] Dmitruk A.V., “Printsip maksimuma dlya obschei zadachi optimalnogo upravleniya s fazovymi i regulyarnymi smeshannymi ogranicheniyami”, Optimalnost upravlyaemykh dinamicheskikh sistem, vyp. 14, VNIISI, M., 1990, 26–42

[18] Chukanov S.V., “Printsip maksimuma dlya zadach optimalnogo upravleniya integralnymi uravneniyami”, Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990, 158–201

[19] Dmitruk A.V., “A nonlocal Lyusternik estimate and its application to control systems with sliding modes”, Nonlinear control systems, v. 2 (2001), eds. A.B. Kurzhanski, A.L. Fradkov, Pergamon Press, Oxford, 2002, 1061–1064

[20] Dmitruk A.V., “On a nonlocal metric regularity of nonlinear operators”, Control and Cybernetics, 34:3 (2005), 723–746 | MR | Zbl

[21] Milyutin A.A., Dmitruk A.V., Osmolovskii N.P., Printsip maksimuma v optimalnom upravlenii, Izd. mekh.-mat. fak. MGU, M., 2004