Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2007_256_a5, author = {A. V. Dmitruk}, title = {Approximation {Theorem} for a {Nonlinear} {Control} {System} with {Sliding} {Modes}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {102--114}, publisher = {mathdoc}, volume = {256}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a5/} }
A. V. Dmitruk. Approximation Theorem for a Nonlinear Control System with Sliding Modes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 102-114. http://geodesic.mathdoc.fr/item/TM_2007_256_a5/
[1] Gamkrelidze R.V., “Optimalnye skolzyaschie rezhimy”, DAN SSSR, 143:6 (1962), 1243–1245 | MR | Zbl
[2] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1974 | MR
[3] McShane E.J., “Relaxed controls and variational problems”, SIAM J. Control., 5 (1967), 438–485 | DOI | MR | Zbl
[4] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[5] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[6] Olech C., “Existence theory in optimal control”, Control theory and topics in functional analysis, v. 1, Intern. Atomic Energy Agency, Vienna, 1976, 291–328 | MR | Zbl
[7] Balder E.J., “A general denseness result for relaxed control theory”, Bull. Austral. Math. Soc., 30 (1984), 463–475 | DOI | MR | Zbl
[8] Artstein Z., “Rapid oscillations, chattering systems, and relaxed controls”, SIAM J. Control and Optim., 27:5 (1989), 940–948 | DOI | MR | Zbl
[9] Rosenblueth J.F., Vinter R.B., “Relaxation procedures for time delay systems”, J. Math. Anal. and Appl., 162:2 (1991), 542–563 | DOI | MR | Zbl
[10] Roubicek T., Relaxation in optimization theory and variational calculus, W. de Gruyter, Berlin, 1997 | MR | Zbl
[11] Tolstonogov A.A., Differential inclusions in a Banach space, Kluwer, Dordrecht, 2000 | MR | Zbl
[12] Bulgakov A.I., Vasilyev V.V., “On the theory of functional-differential inclusion of neutral type”, Georgian Math. J., 9:1 (2002), 33–52 | MR | Zbl
[13] Danford N., Shvarts Dzh., Lineinye operatory. T. 1: Obschaya teoriya, Izd-vo inostr. lit., M., 1962
[14] Visintin A., “Strong convergence results related to strict convexity”, Commun. Part. Diff. Equat., 9:5 (1984), 439–466 | DOI | MR | Zbl
[15] Rzezuchowski T., “Strong convergence of selections implied by weak”, Bull. Austral. Math. Soc., 39 (1989), 201–214 | DOI | MR | Zbl
[16] Dmitruk A.V., Milyutin A.A., Osmolovskii N.P., “Teorema Lyusternika i teoriya ekstremuma”, UMN, 35:6 (1980), 11–46 | MR | Zbl
[17] Dmitruk A.V., “Printsip maksimuma dlya obschei zadachi optimalnogo upravleniya s fazovymi i regulyarnymi smeshannymi ogranicheniyami”, Optimalnost upravlyaemykh dinamicheskikh sistem, vyp. 14, VNIISI, M., 1990, 26–42
[18] Chukanov S.V., “Printsip maksimuma dlya zadach optimalnogo upravleniya integralnymi uravneniyami”, Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990, 158–201
[19] Dmitruk A.V., “A nonlocal Lyusternik estimate and its application to control systems with sliding modes”, Nonlinear control systems, v. 2 (2001), eds. A.B. Kurzhanski, A.L. Fradkov, Pergamon Press, Oxford, 2002, 1061–1064
[20] Dmitruk A.V., “On a nonlocal metric regularity of nonlinear operators”, Control and Cybernetics, 34:3 (2005), 723–746 | MR | Zbl
[21] Milyutin A.A., Dmitruk A.V., Osmolovskii N.P., Printsip maksimuma v optimalnom upravlenii, Izd. mekh.-mat. fak. MGU, M., 2004