Entropy Estimations for Motion Planning Problems in Robotics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 70-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the concluding work of our series devoted to the evaluation of the complexity and entropy of a motion planning problem for a sub-Riemannian distribution. We consider some new cases of the dimension and codimension of the distribution, in particular, $(2,3)$, $(3,4)$, and some other that are one-step-bracket-generating. We summarize all known estimations for low-dimensional generic systems. They include all generic systems of corank less than 4 and other cases up to corank 10.
@article{TM_2007_256_a3,
     author = {J.-P. Gauthier and V. M. Zakalyukin},
     title = {Entropy {Estimations} for {Motion} {Planning} {Problems} in {Robotics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {70--88},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a3/}
}
TY  - JOUR
AU  - J.-P. Gauthier
AU  - V. M. Zakalyukin
TI  - Entropy Estimations for Motion Planning Problems in Robotics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 70
EP  - 88
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a3/
LA  - ru
ID  - TM_2007_256_a3
ER  - 
%0 Journal Article
%A J.-P. Gauthier
%A V. M. Zakalyukin
%T Entropy Estimations for Motion Planning Problems in Robotics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 70-88
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a3/
%G ru
%F TM_2007_256_a3
J.-P. Gauthier; V. M. Zakalyukin. Entropy Estimations for Motion Planning Problems in Robotics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 70-88. http://geodesic.mathdoc.fr/item/TM_2007_256_a3/

[1] Gauthier J.-P., Zakalyukin V., “On the codimension one motion planning problem”, J. Dyn. and Control Syst., 11:1 (2005), 73–89 | DOI | MR | Zbl

[2] Gauthier J.-P., Zakalyukin V., “On the one-step-bracket-generating motion planning problem”, J. Dyn. and Control Syst., 11:2 (2005), 215–235 | DOI | MR | Zbl

[3] Gote Zh.P., Zakalyukin V.M., “Programmnoe dvizhenie robota: neregulyarnyi sluchai”, Tr. MIAN, 250, 2005, 64–78 | Zbl

[4] Gauthier J.-P., Zakalyukin V., “On the motion planning problem, complexity, entropy, and nonholonomic interpolation”, J. Dyn. and Control Syst., 12:3 (2006), 371–404 | DOI | MR | Zbl

[5] Gauthier J.P., Zakalyukin V.M., “Nonholonomic interpolation: A general methodology for motion planning in robotics”, Proc. MTNS 2006 Conf. (Kyoto, Japan, July 2006) (to appear)

[6] Agrachev A.A., Chakir El-H.El-A., Gauthier J.P., “Sub-Riemannian metrics on $\mathbb R^3$”, Geometric control and non-holonomic mechanics, Proc. Conf. (Mexico City, 1996), Canad. Math. Soc. Conf. Proc., 25, Amer. Math. Soc., Providence (RI), 1998, 29–76 | MR

[7] Agrachev A.A., Gote Zh.P.A., “Subrimanovy metriki i izoperimetricheskie zadachi v kontaktnom sluchae”, Tr. Mezhdunar. konf., posv. 90-letiyu L.S. Pontryagina. T. 3: Geometricheskaya teoriya upravleniya, Itogi nauki i tekhniki. Sovr. matematika i ee pril. Tematich. obzory, 64, VINITI, M., 1999, 5–48 ; J. Math. Sci., 103:6 (2001), 639–663 | MR | Zbl | DOI | Zbl

[8] Charlot G., “Quasi-contact S-R metrics: Normal form in $\mathbb R^{2n}$, wave front and caustic in $\mathbb R^4$”, Acta appl. math., 74:3 (2002), 217–263 | DOI | MR | Zbl

[9] Chakir El-H.El-A., Gauthier J.-P., Kupka I., “Small sub-Riemannian balls on $\mathbb R^3$”, J. Dyn. and Control Syst., 2:3 (1996), 359–421 | DOI | MR | Zbl

[10] Romero-Meléndez C., Gauthier J.P., Monroy-Pérez F., “On complexity and motion planning for co-rank one sub-Riemannian metrics”, ESAIM Control Optim. and Calc. Var., 10 (2004), 634–655 | DOI | MR | Zbl

[11] Gromov M., “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian geometry, Progr. Math., 144, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl

[12] Jean F., “Complexity of nonholonomic motion planning”, Intern. J. Control., 74:8 (2001), 776–782 | DOI | MR | Zbl

[13] Jean F., “Entropy and complexity of a path in sub-Riemannian geometry”, ESAIM Control Optim. and Calc. Var., 9 (2003), 485–506 | MR

[14] Falbel E., Jean F., “Measures of transverse paths in sub-Riemannian geometry”, J. Anal. Math., 91 (2003), 231–246 | DOI | MR | Zbl

[15] Laumond J.P., Sekhavat S., Lamiraux F., “Guidelines in nonholonomic motion planning for mobile robots”, Robot motion planning and control, Lect. Notes Control and Inform. Sci., 229, Springer, Berlin, 1998, 1–53 | MR