Entropy Estimations for Motion Planning Problems in Robotics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 70-88

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the concluding work of our series devoted to the evaluation of the complexity and entropy of a motion planning problem for a sub-Riemannian distribution. We consider some new cases of the dimension and codimension of the distribution, in particular, $(2,3)$, $(3,4)$, and some other that are one-step-bracket-generating. We summarize all known estimations for low-dimensional generic systems. They include all generic systems of corank less than 4 and other cases up to corank 10.
@article{TM_2007_256_a3,
     author = {J.-P. Gauthier and V. M. Zakalyukin},
     title = {Entropy {Estimations} for {Motion} {Planning} {Problems} in {Robotics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {70--88},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a3/}
}
TY  - JOUR
AU  - J.-P. Gauthier
AU  - V. M. Zakalyukin
TI  - Entropy Estimations for Motion Planning Problems in Robotics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 70
EP  - 88
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a3/
LA  - ru
ID  - TM_2007_256_a3
ER  - 
%0 Journal Article
%A J.-P. Gauthier
%A V. M. Zakalyukin
%T Entropy Estimations for Motion Planning Problems in Robotics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 70-88
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a3/
%G ru
%F TM_2007_256_a3
J.-P. Gauthier; V. M. Zakalyukin. Entropy Estimations for Motion Planning Problems in Robotics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 70-88. http://geodesic.mathdoc.fr/item/TM_2007_256_a3/