Monodromy of Fuchsian Systems on Complex Linear Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 267-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

On complex linear spaces, Fuchs-type Pfaffian systems are studied that are defined by configurations of vectors in these spaces. These systems are referred to as $R$-systems in this paper. For the vector configurations that are systems of roots of complex reflection groups, the monodromy representations of $R$-systems are described. These representations are deformations of the standard representations of reflection groups. Such deformations define representations of generalized braid groups corresponding to complex reflection groups and are similar to the Burau representations of the Artin braid groups.
@article{TM_2007_256_a13,
     author = {V. P. Leksin},
     title = {Monodromy of {Fuchsian} {Systems} on {Complex} {Linear} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {267--277},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a13/}
}
TY  - JOUR
AU  - V. P. Leksin
TI  - Monodromy of Fuchsian Systems on Complex Linear Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 267
EP  - 277
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a13/
LA  - ru
ID  - TM_2007_256_a13
ER  - 
%0 Journal Article
%A V. P. Leksin
%T Monodromy of Fuchsian Systems on Complex Linear Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 267-277
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a13/
%G ru
%F TM_2007_256_a13
V. P. Leksin. Monodromy of Fuchsian Systems on Complex Linear Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 267-277. http://geodesic.mathdoc.fr/item/TM_2007_256_a13/

[1] Aubert A.-M., Achar P., On rank-two complex reflection groups, Prépubl. N 383, Inst. Math. Jussieu, 2004; http://www.institut.math.jussieu.fr/~preprints/pdf/383.pdf

[2] Burbaki N., Gruppy i algebry Li, gl. 4–6, Mir, M., 1972 | MR | Zbl

[3] Broué M., Malle G., Rouquier R., “Complex reflection groups, braid groupes, Hecke algebras”, J. reine und angew. Math., 500 (1998), 127–190 | MR | Zbl

[4] Vasilevich N.D., Ladis N.N., “Integriruemost uravnenii Pfaffa na $\mathbb C\mathrm P^n$”, Dif. uravneniya, 15:4 (1979), 732–733 | MR | Zbl

[5] Cherednik I.V., “Obobschennye gruppy kos i lokalnye $r$-matrichnye sistemy”, DAN SSSR, 307:1 (1989), 49–53 | Zbl

[6] Cherednik I., “Monodromy representations for generalized Knizhnik–Zamolodchikov equations and Hecke algebras”, Publ. RIMS, Kyoto Univ., 27:5 (1991), 711–726 | DOI | MR | Zbl

[7] Cohen A.M., “Finite complex reflection groups”, Ann. Sci. Ecole Norm. Super. Sér. 4, 9 (1976), 379–436 | MR | Zbl

[8] Coxeter H.S.M., “The symmetry groups of the regular complex polygons”, Arch. Math., 13 (1962), 86–97 | DOI | MR | Zbl

[9] Etingof P., Rains E., Central extensions of preprojective algebras, the quantum Heisenberg algebra, and 2-dimensional complex reflection groups, E-print, 2005 math.RT/0503393 | MR

[10] Giorgadze G., “Monodromy approach to quantum computing”, Intern. J. Mod. Phys. B, 16:30 (2002), 4593–4605 | DOI | Zbl

[11] Givental A.B., “Skruchennye formuly Pikara–Lefshetsa”, Funkts. analiz i ego pril., 22:1 (1988), 12–22 | MR | Zbl

[12] Freedman M.H., Kitaev A., Larsen M.J., Wang Z., Topological quantum computation, E-print, 2001 quant-ph/0101025 | MR

[13] Hughes M., “Extended root graphs for complex reflection groups”, Commun. Algebra, 27 (1999), 119–148 | DOI | MR | Zbl

[14] Hughes M.C., Morris A.O., “Root systems for two dimensional complex reflection groups”, Sèm. Lothar. Comb., 45:B45e (2001), 18 pp. | MR | Zbl

[15] Kohno T., “Linear representations of braid groups and classical Yang–Baxter equations”, Contemp. Math., 78 (1988), 339–363 | MR | Zbl

[16] Lexin V.P., “WDVV equations and generalized Burau representations”, Matematicheskie idei P.L. Chebysheva i ikh prilozhenie k sovremennym problemam estestvoznaniya, Tez. dokl. Mezhdunar. konf. (Obninsk, 14–18 maya 2002 g.), 59–60

[17] Lexin V.P., “Monodromy of rational KZ equations and some related topics”, Acta appl. math., 75 (2003), 105–115 | DOI | MR | Zbl

[18] Leksin V.P., “Monodromy of Cherednik–Kohno–Veselov connections”, Proc. IRMA, 2006 (to appear) | MR

[19] Nebe G., “The root lattices of the complex reflection groups”, J. Group Theory, 2 (1999), 15–38 | DOI | MR | Zbl

[20] Opdam E.M., Lecture notes on Dunkl operators for real and complex reflection groups, MSJ Mem., 8, Math. Soc. Japan, Tokyo, 2000 | MR | Zbl

[21] Shephard G.C., Todd J.A., “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | MR | Zbl

[22] Squier C.C., “Matrix representations of Artin groups”, Proc. Amer. Math. Soc., 103 (1988), 49–53 | DOI | MR | Zbl

[23] Toledano Laredo V., “Flat connections and quantum groups”, Acta appl. math., 73 (2002), 155–173 | DOI | MR | Zbl

[24] Veselov A.P., “On geometry of a special class of solutions to generalized WDVV equations”, Integrability: The Seiberg–Witten and Whitham equations (Edinburg, 1998), Gordon and Breach, Amsterdam, 2000, 125–135 | MR | Zbl