Monodromy of Fuchsian Systems on Complex Linear Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 267-277

Voir la notice de l'article provenant de la source Math-Net.Ru

On complex linear spaces, Fuchs-type Pfaffian systems are studied that are defined by configurations of vectors in these spaces. These systems are referred to as $R$-systems in this paper. For the vector configurations that are systems of roots of complex reflection groups, the monodromy representations of $R$-systems are described. These representations are deformations of the standard representations of reflection groups. Such deformations define representations of generalized braid groups corresponding to complex reflection groups and are similar to the Burau representations of the Artin braid groups.
@article{TM_2007_256_a13,
     author = {V. P. Leksin},
     title = {Monodromy of {Fuchsian} {Systems} on {Complex} {Linear} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {267--277},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a13/}
}
TY  - JOUR
AU  - V. P. Leksin
TI  - Monodromy of Fuchsian Systems on Complex Linear Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 267
EP  - 277
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a13/
LA  - ru
ID  - TM_2007_256_a13
ER  - 
%0 Journal Article
%A V. P. Leksin
%T Monodromy of Fuchsian Systems on Complex Linear Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 267-277
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a13/
%G ru
%F TM_2007_256_a13
V. P. Leksin. Monodromy of Fuchsian Systems on Complex Linear Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 267-277. http://geodesic.mathdoc.fr/item/TM_2007_256_a13/