The Curvature and Hyperbolicity of Hamiltonian Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 31-53
Voir la notice de l'article provenant de la source Math-Net.Ru
Curvature-type invariants of Hamiltonian systems generalize sectional curvatures of Riemannian manifolds: the negativity of the curvature is an indicator of the hyperbolic behavior of the Hamiltonian flow. In this paper, we give a self-contained description of the related constructions and facts; they lead to a natural extension of the classical results about Riemannian geodesic flows and indicate some new phenomena.
@article{TM_2007_256_a1,
author = {A. A. Agrachev},
title = {The {Curvature} and {Hyperbolicity} of {Hamiltonian} {Systems}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {31--53},
publisher = {mathdoc},
volume = {256},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a1/}
}
A. A. Agrachev. The Curvature and Hyperbolicity of Hamiltonian Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 31-53. http://geodesic.mathdoc.fr/item/TM_2007_256_a1/