The Curvature and Hyperbolicity of Hamiltonian Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 31-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Curvature-type invariants of Hamiltonian systems generalize sectional curvatures of Riemannian manifolds: the negativity of the curvature is an indicator of the hyperbolic behavior of the Hamiltonian flow. In this paper, we give a self-contained description of the related constructions and facts; they lead to a natural extension of the classical results about Riemannian geodesic flows and indicate some new phenomena.
@article{TM_2007_256_a1,
     author = {A. A. Agrachev},
     title = {The {Curvature} and {Hyperbolicity} of {Hamiltonian} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {31--53},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a1/}
}
TY  - JOUR
AU  - A. A. Agrachev
TI  - The Curvature and Hyperbolicity of Hamiltonian Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 31
EP  - 53
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a1/
LA  - ru
ID  - TM_2007_256_a1
ER  - 
%0 Journal Article
%A A. A. Agrachev
%T The Curvature and Hyperbolicity of Hamiltonian Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 31-53
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a1/
%G ru
%F TM_2007_256_a1
A. A. Agrachev. The Curvature and Hyperbolicity of Hamiltonian Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 31-53. http://geodesic.mathdoc.fr/item/TM_2007_256_a1/