The Curvature and Hyperbolicity of Hamiltonian Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 31-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

Curvature-type invariants of Hamiltonian systems generalize sectional curvatures of Riemannian manifolds: the negativity of the curvature is an indicator of the hyperbolic behavior of the Hamiltonian flow. In this paper, we give a self-contained description of the related constructions and facts; they lead to a natural extension of the classical results about Riemannian geodesic flows and indicate some new phenomena.
@article{TM_2007_256_a1,
     author = {A. A. Agrachev},
     title = {The {Curvature} and {Hyperbolicity} of {Hamiltonian} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {31--53},
     publisher = {mathdoc},
     volume = {256},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2007_256_a1/}
}
TY  - JOUR
AU  - A. A. Agrachev
TI  - The Curvature and Hyperbolicity of Hamiltonian Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2007
SP  - 31
EP  - 53
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2007_256_a1/
LA  - ru
ID  - TM_2007_256_a1
ER  - 
%0 Journal Article
%A A. A. Agrachev
%T The Curvature and Hyperbolicity of Hamiltonian Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2007
%P 31-53
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2007_256_a1/
%G ru
%F TM_2007_256_a1
A. A. Agrachev. The Curvature and Hyperbolicity of Hamiltonian Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and optimization, Tome 256 (2007), pp. 31-53. http://geodesic.mathdoc.fr/item/TM_2007_256_a1/

[1] Anosov D.V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967, 211 pp. | MR

[2] Arnold V.I., Givental A.B., “Simplekticheskaya geometriya”, Dinamicheskie sistemy–4, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 4, VINITI, M., 1985, 5–139 | MR

[3] Katok A., Khasselblatt B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999, 767 pp.

[4] Agrachev A., Gamkrelidze R., “Symplectic methods for optimization and control”, Geometry of feedback and optimal control, eds. B. Jakubczyk, W. Respondek, M. Dekker, New York, 1998, 19–77 | MR | Zbl

[5] Agrachev A.A., Gamkrelidze R.V., “Feedback-invariant optimal control theory and differential geometry. I: Regular extremals”, J. Dyn. and Control Syst., 3:3 (1997), 343–389 | DOI | MR | Zbl

[6] Agrachev A.A., Zelenko I., “Geometry of Jacobi curves. I, II”, J. Dyn. and Control Syst., 8:1 (2002), 93–140 ; “167–215”:2 | DOI | MR | Zbl | MR

[7] Agrachev A.A., Scherbakova N.N., “Giperbolichnost gamiltonovykh sistem otritsatelnoi krivizny”, DAN, 400:3 (2005), 295–298 | MR

[8] Agrachev A.A., Chtcherbakova N.N., Zelenko I., “On curvatures and focal points of dynamical Lagrangian distributions and their reductions by first integrals”, J. Dyn. and Control Syst., 11:3 (2005), 297–327 | DOI | MR | Zbl

[9] Ballmann W., Wojtkowski M., “An estimate for the measure theoretic entropy of geodesic flows”, Ergod. Theory and Dyn. Syst., 9:2 (1989), 271–279 | MR | Zbl

[10] Chittaro F.C., An estimate for the entropy of Hamiltonian flows, E-print, 2006 math.DS/0602674 | MR