Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_255_a9, author = {Yu. A. Dubinskii}, title = {Decompositions of the {Sobolev} {Scale} and {Gradient--Divergence} {Scale} into the {Sum} of {Solenoidal} and {Potential} {Subspaces}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {136--145}, publisher = {mathdoc}, volume = {255}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a9/} }
TY - JOUR AU - Yu. A. Dubinskii TI - Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 136 EP - 145 VL - 255 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_255_a9/ LA - ru ID - TM_2006_255_a9 ER -
%0 Journal Article %A Yu. A. Dubinskii %T Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 136-145 %V 255 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_255_a9/ %G ru %F TM_2006_255_a9
Yu. A. Dubinskii. Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 136-145. http://geodesic.mathdoc.fr/item/TM_2006_255_a9/
[1] Roitberg Y., Elliptic boundary value problems in the spaces of distributions, Math. and Its Appl., 384, Kluwer, Dordrecht, 1996 | MR | Zbl
[2] Dubinskii Yu.A., “Kompleksnyi analog zadachi Neimana i ortogonalnoe razlozhenie $L_2$ v summu analiticheskogo i koanaliticheskogo podprostranstv”, DAN, 393:2 (2003), 155–158 | MR
[3] Dubinskii Yu.A., “Ob odnoi kompleksnoi kraevoi zadache”, Vestn. MEI, 2004, no. 6, 43–48
[4] Dubinskii Ju.A., “Complex Neumann type boundary problem and decomposition of Lebesgue spaces”, Discr. and Contin. Dyn. Syst., 10:1–2 (2004), 201–210 | MR | Zbl