Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 136-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the complete Sobolev scale and the gradient–divergence scale, decompositions into direct sums of solenoidal and potential subspaces are found. A smoothing property of solenoidal factorization is proved. Projectors onto the subspaces of solenoidal and potential functions are described.
@article{TM_2006_255_a9,
     author = {Yu. A. Dubinskii},
     title = {Decompositions of the {Sobolev} {Scale} and {Gradient--Divergence} {Scale} into the {Sum} of {Solenoidal} and {Potential} {Subspaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {136--145},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a9/}
}
TY  - JOUR
AU  - Yu. A. Dubinskii
TI  - Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 136
EP  - 145
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a9/
LA  - ru
ID  - TM_2006_255_a9
ER  - 
%0 Journal Article
%A Yu. A. Dubinskii
%T Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 136-145
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a9/
%G ru
%F TM_2006_255_a9
Yu. A. Dubinskii. Decompositions of the Sobolev Scale and Gradient--Divergence Scale into the Sum of Solenoidal and Potential Subspaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 136-145. http://geodesic.mathdoc.fr/item/TM_2006_255_a9/

[1] Roitberg Y., Elliptic boundary value problems in the spaces of distributions, Math. and Its Appl., 384, Kluwer, Dordrecht, 1996 | MR | Zbl

[2] Dubinskii Yu.A., “Kompleksnyi analog zadachi Neimana i ortogonalnoe razlozhenie $L_2$ v summu analiticheskogo i koanaliticheskogo podprostranstv”, DAN, 393:2 (2003), 155–158 | MR

[3] Dubinskii Yu.A., “Ob odnoi kompleksnoi kraevoi zadache”, Vestn. MEI, 2004, no. 6, 43–48

[4] Dubinskii Ju.A., “Complex Neumann type boundary problem and decomposition of Lebesgue spaces”, Discr. and Contin. Dyn. Syst., 10:1–2 (2004), 201–210 | MR | Zbl