Decompositions of the Sobolev Scale and Gradient–Divergence Scale into the Sum of Solenoidal and Potential Subspaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 136-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the complete Sobolev scale and the gradient–divergence scale, decompositions into direct sums of solenoidal and potential subspaces are found. A smoothing property of solenoidal factorization is proved. Projectors onto the subspaces of solenoidal and potential functions are described.
@article{TM_2006_255_a9,
     author = {Yu. A. Dubinskii},
     title = {Decompositions of the {Sobolev} {Scale} and {Gradient{\textendash}Divergence} {Scale} into the {Sum} of {Solenoidal} and {Potential} {Subspaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {136--145},
     year = {2006},
     volume = {255},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a9/}
}
TY  - JOUR
AU  - Yu. A. Dubinskii
TI  - Decompositions of the Sobolev Scale and Gradient–Divergence Scale into the Sum of Solenoidal and Potential Subspaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 136
EP  - 145
VL  - 255
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a9/
LA  - ru
ID  - TM_2006_255_a9
ER  - 
%0 Journal Article
%A Yu. A. Dubinskii
%T Decompositions of the Sobolev Scale and Gradient–Divergence Scale into the Sum of Solenoidal and Potential Subspaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 136-145
%V 255
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a9/
%G ru
%F TM_2006_255_a9
Yu. A. Dubinskii. Decompositions of the Sobolev Scale and Gradient–Divergence Scale into the Sum of Solenoidal and Potential Subspaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 136-145. http://geodesic.mathdoc.fr/item/TM_2006_255_a9/

[1] Roitberg Y., Elliptic boundary value problems in the spaces of distributions, Math. and Its Appl., 384, Kluwer, Dordrecht, 1996 | MR | Zbl

[2] Dubinskii Yu.A., “Kompleksnyi analog zadachi Neimana i ortogonalnoe razlozhenie $L_2$ v summu analiticheskogo i koanaliticheskogo podprostranstv”, DAN, 393:2 (2003), 155–158 | MR

[3] Dubinskii Yu.A., “Ob odnoi kompleksnoi kraevoi zadache”, Vestn. MEI, 2004, no. 6, 43–48

[4] Dubinskii Ju.A., “Complex Neumann type boundary problem and decomposition of Lebesgue spaces”, Discr. and Contin. Dyn. Syst., 10:1–2 (2004), 201–210 | MR | Zbl