Grid Approximation of the First Derivatives of the Solution to the Dirichlet Problem for the Laplace Equation on a Polygon
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 99-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the method of composite square and polar grids, we construct approximations of the first derivatives of the solution to the Dirichlet problem for the Laplace equation on a polygon and find error estimates for such approximations.
@article{TM_2006_255_a7,
     author = {E. A. Volkov},
     title = {Grid {Approximation} of the {First} {Derivatives} of the {Solution} to the {Dirichlet} {Problem} for the {Laplace} {Equation} on {a~Polygon}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {99--115},
     year = {2006},
     volume = {255},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a7/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - Grid Approximation of the First Derivatives of the Solution to the Dirichlet Problem for the Laplace Equation on a Polygon
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 99
EP  - 115
VL  - 255
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a7/
LA  - ru
ID  - TM_2006_255_a7
ER  - 
%0 Journal Article
%A E. A. Volkov
%T Grid Approximation of the First Derivatives of the Solution to the Dirichlet Problem for the Laplace Equation on a Polygon
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 99-115
%V 255
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a7/
%G ru
%F TM_2006_255_a7
E. A. Volkov. Grid Approximation of the First Derivatives of the Solution to the Dirichlet Problem for the Laplace Equation on a Polygon. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 99-115. http://geodesic.mathdoc.fr/item/TM_2006_255_a7/

[1] Volkov E.A., “Metod sostavnykh setok dlya konechnykh i beskonechnykh oblastei s kusochno gladkoi granitsei”, Tr. MIAN, 96, 1968, 117–148 | Zbl

[2] Volkov E.A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN, 77, 1965, 113–142 | Zbl

[3] Volkov E.A., “O metode regulyarnykh sostavnykh setok dlya uravneniya Laplasa na mnogougolnikakh”, Tr. MIAN, 140, 1976, 68–102 | MR | Zbl

[4] Dosiyev A.A., “A fourth order accurate composite grids method for solving Laplace's boundary value problems with singularities”, ZhVMiMF, 42:6 (2002), 867–884 | MR | Zbl

[5] Volkov E.A., Dosiev A.A., Bozer M., “Metod sostavnykh setok povyshennoi tochnosti”, DAN, 396:4 (2004), 446–448 | MR | Zbl

[6] Volkov E.A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike”, Tr. MIAN, 77, 1965, 89–112 | Zbl

[7] Volkov E.A., “Effektivnye otsenki pogreshnosti reshenii metodom setok kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike i nekotorykh treugolnikakh”, Tr. MIAN, 74, 1966, 55–85 | Zbl

[8] Stechkin S.B., “Dopolnenie VI”, Khardi G.G., Littlvud Dzh.E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948, 388–393

[9] Volkov E.A., “On convergence in $C_2$ of a difference solution of the Laplace equation on a rectangle”, Russ. J. Numer. Anal. and Math. Modell., 14:3 (1999), 291–298 | DOI | MR | Zbl

[10] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Chislennye metody, Binom. Laboratoriya znanii, M., 2004, 636 pp.

[11] Volkov E.A., “Priblizhennoe reshenie uravnenii Laplasa i Puassona v vesovykh prostranstvakh Geldera”, Tr. MIAN, 128, 1972, 76–112 | Zbl

[12] Kellog O.D., “On the derivatives of harmonic functions on the boundary”, Trans. Amer. Math. Soc., 33:2 (1931), 486–510 | DOI | MR | Zbl

[13] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostr. lit., M., 1957, 256 pp.

[14] Samarskii A.A., Andreev V.B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976, 352 pp. | MR | Zbl