Pointwise Characterization of Sobolev Classes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 71-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a function $f$ is in the Sobolev class $W_{\mathrm {loc}}^{m,p}(\mathbb R^n)$ or $W^{m,p}(Q)$ for some cube $Q\subset \mathbb R^n$ if and only if the formal $(m-1)$-Taylor remainder $R^{m-1}f(x,y)$ of $f$ satisfies the pointwise inequality $|R^{m-1}f(x,y)|\le |x-y|^m [a(x)+a(y)]$ for some $a\in L^p(Q)$ outside a set $N\subset Q$ of null Lebesgue measure. This is analogous to H. Whitney's Taylor remainder condition characterizing the traces of smooth functions on closed subsets of $\mathbb R^n$.
@article{TM_2006_255_a5,
     author = {B. Bojarski},
     title = {Pointwise {Characterization} of {Sobolev} {Classes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {71--87},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a5/}
}
TY  - JOUR
AU  - B. Bojarski
TI  - Pointwise Characterization of Sobolev Classes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 71
EP  - 87
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a5/
LA  - en
ID  - TM_2006_255_a5
ER  - 
%0 Journal Article
%A B. Bojarski
%T Pointwise Characterization of Sobolev Classes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 71-87
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a5/
%G en
%F TM_2006_255_a5
B. Bojarski. Pointwise Characterization of Sobolev Classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 71-87. http://geodesic.mathdoc.fr/item/TM_2006_255_a5/

[1] Adams D.R., Hedberg L.I., Function spaces and potential theory, Springer, Berlin, 1996 | MR

[2] Assouad P., “Plongements lipschitziens dans $\mathbb R^n$”, Bull. Soc. math. France., 111 (1983), 429–448 | MR | Zbl

[3] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[4] Bojarski B., “Sharp maximal operator of fractional order and Sobolev imbedding inequalities”, Bull. Pol. Acad. sci. Math., 33 (1985), 7–16 | MR | Zbl

[5] Bojarski B., “Remarks on Markov's inequalities and some properties of polynomials”, Bull. Pol. Acad. sci. Math., 33 (1985), 355–365 | MR | Zbl

[6] Bojarski B., “Remarks on local function spaces”, Function spaces and applications, Lect. Notes Math., 1302, Springer, Berlin, 1988, 137–152 | MR

[7] Bojarski B., “Remarks on Sobolev imbedding inequalities”, Complex analysis, Lect. Notes Math., 1351, Springer, Berlin, 1988, 52–68 | MR

[8] Bojarski B., “Marcinkiewicz–Zygmund theorem and Sobolev spaces”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Tr. Mezhdunar. konf., posv. 80-letiyu L.D. Kudryavtseva, Fizmatlit, M., 2003, 40–50

[9] Bojarski B., Hajłasz P., “Pointwise inequalities for Sobolev functions and some applications”, Stud. math., 106 (1993), 77–92 | MR | Zbl

[10] Bojarski B., Hajłasz P., Strzelecki P., “Improved $C^{k,\lambda}$ approximation of higher order Sobolev functions in norm and capacity”, Indiana Univ. Math. J., 51 (2002), 507–540 | DOI | MR | Zbl

[11] Brudnyi Yu.A., Gantsburg M.I., “Ob odnoi ekstremalnoi zadache dlya mnogochlenov $n$ peremennykh”, Izv. AN SSSR. Ser. mat., 37 (1973), 344–355 | MR | Zbl

[12] Burenkov V.I., “Integralnoe predstavlenie Soboleva i formula Teilora”, Tr. MIAN, 131, 1974, 33–38 | MR | Zbl

[13] Calderón A.P., Zygmund A., “Local properties of solutions of elliptic partial differential equations”, Stud. math., 20 (1961), 171–225 | MR | Zbl

[14] Campanato S., “Proprietà di una famiglia di spazi funzionali”, Ann. Scuola Norm. Super. Pisa. Ser. 3, 18 (1964), 137–160 | MR | Zbl

[15] Cruz-Uribe D., Neugebauer C.J., Olesen V., “Weighted norm inequalities for geometric fractional maximal operators”, J. Fourier Anal. and Appl., 5 (1999), 45–66 | DOI | MR | Zbl

[16] Frostman O., “Potentiel d'équilibre et capacité”, Meddel. Lunds. Univ. Mat. Sem., 3 (1935) | Zbl

[17] Glaeser G., “Étude de quelques algèbres tayloriennes”, J. Anal. Math., 6 (1958), 1–124 | DOI | MR | Zbl

[18] Hajłasz P., Geometric theory of Sobolev mappings, Master Thes. Warsaw Univ., 1994

[19] Hajłasz P., “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5 (1996), 403–415 | MR | Zbl

[20] Hedberg L., “On certain convolution inequalities”, Proc. Amer. Math. Soc., 36 (1972), 505–510 | DOI | MR

[21] Jonsson A., Wallin H., Function spaces on subsets of $\mathbb R^n$, Math. Rept., 2, N 1, Harwood Acad. Publ., London, 1984 | MR

[22] Landkof N.S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[23] Liu F.C., Tai W.S., “Approximate Taylor polynomials and differentiation of functions”, Topol. Meth. Nonlin. Anal., 3 (1994), 189–196 | MR | Zbl

[24] Malgrange B., Ideals of differentiable functions, Oxford Univ. Press, London, 1967 | MR

[25] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal functions”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[26] Neugebauer C.J., “Iterations of Hardy–Littlewood maximal functions”, Proc. Amer. Math. Soc., 101 (1987), 272–276 | DOI | MR | Zbl

[27] Runst T., Sickel W., Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, W. de Gruyter, Berlin, 1996 | MR | Zbl

[28] Sobolev S.L., “Ob odnoi teoreme funktsionalnogo analiza”, Mat. sb., 4:3 (1938), 471–497 | Zbl

[29] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962

[30] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970 | MR

[31] Swanson D., “Pointwise inequalities and approximation in fractional Sobolev spaces”, Stud. math., 149 (2002), 147–174 | DOI | MR | Zbl

[32] Triebel H., “A new approach to function spaces on quasi-metric spaces”, Rev. Mat. Complut., 18 (2005), 7–48 | MR | Zbl

[33] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl

[34] Whitney H., “Differentiable functions defined in closed sets. I”, Trans. Amer. Math. Soc., 36 (1934), 369–387 | DOI | MR | Zbl

[35] Ziemer W.P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Grad. Texts Math., 120, Springer, New York, 1989 | MR | Zbl