Pointwise Characterization of Sobolev Classes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 71-87

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a function $f$ is in the Sobolev class $W_{\mathrm {loc}}^{m,p}(\mathbb R^n)$ or $W^{m,p}(Q)$ for some cube $Q\subset \mathbb R^n$ if and only if the formal $(m-1)$-Taylor remainder $R^{m-1}f(x,y)$ of $f$ satisfies the pointwise inequality $|R^{m-1}f(x,y)|\le |x-y|^m [a(x)+a(y)]$ for some $a\in L^p(Q)$ outside a set $N\subset Q$ of null Lebesgue measure. This is analogous to H. Whitney's Taylor remainder condition characterizing the traces of smooth functions on closed subsets of $\mathbb R^n$.
@article{TM_2006_255_a5,
     author = {B. Bojarski},
     title = {Pointwise {Characterization} of {Sobolev} {Classes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {71--87},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a5/}
}
TY  - JOUR
AU  - B. Bojarski
TI  - Pointwise Characterization of Sobolev Classes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 71
EP  - 87
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a5/
LA  - en
ID  - TM_2006_255_a5
ER  - 
%0 Journal Article
%A B. Bojarski
%T Pointwise Characterization of Sobolev Classes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 71-87
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a5/
%G en
%F TM_2006_255_a5
B. Bojarski. Pointwise Characterization of Sobolev Classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 71-87. http://geodesic.mathdoc.fr/item/TM_2006_255_a5/