Local Convergence in Measure on Semifinite von Neumann Algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 41-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathcal M$ is a von Neumann algebra of operators on a Hilbert space $\mathcal H$ and $\tau $ is a faithful normal semifinite trace on $\mathcal M$. The set $\widetilde {\mathcal M}$ of all $\tau $-measurable operators with the topology $t_{\tau }$ of convergence in measure is a topological $*$-algebra. The topologies of $\tau $-local and weakly $\tau $-local convergence in measure are obtained by localizing $t_{\tau }$ and are denoted by $t_{\tau \mathrm l}$ and $t_{\mathrm w\tau \mathrm l}$, respectively. The set $\widetilde {\mathcal M}$ with any of these topologies is a topological vector space. The continuity of certain operations and the closedness of certain classes of operators in $\widetilde {\mathcal M}$ with respect to the topologies $t_{\tau \mathrm l}$ and $t_{\mathrm w\tau \mathrm l}$ are proved. S.M. Nikol'skii's theorem (1943) is extended from the algebra $\mathcal B(\mathcal H)$ to semifinite von Neumann algebras. The following theorem is proved: {\itshape For a von Neumann algebra $\mathcal M$ with a faithful normal semifinite trace $\tau $, the following conditions are equivalent\textup : \textup {(i)} the algebra $\mathcal M$ is finite\textup ; \textup {(ii)} $t_{\mathrm w\tau \mathrm l}= t_{\tau \mathrm l}$\textup ; \textup {(iii)} the multiplication is jointly $t_{\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}\times \widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$\textup ; \textup {(iv)} the multiplication is jointly $t_{\mathrm w\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}\times \widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$\textup ; \textup {(v)} the involution is $t_{\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$.}
@article{TM_2006_255_a3,
     author = {A. M. Bikchentaev},
     title = {Local {Convergence} in {Measure} on {Semifinite} von {Neumann} {Algebras}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a3/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Local Convergence in Measure on Semifinite von Neumann Algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 41
EP  - 54
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a3/
LA  - ru
ID  - TM_2006_255_a3
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Local Convergence in Measure on Semifinite von Neumann Algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 41-54
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a3/
%G ru
%F TM_2006_255_a3
A. M. Bikchentaev. Local Convergence in Measure on Semifinite von Neumann Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 41-54. http://geodesic.mathdoc.fr/item/TM_2006_255_a3/

[1] Bikchentaev A.M., “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Mat. zametki, 75:3 (2004), 342–349 | MR | Zbl

[2] Bikchentaev A.M., “The continuity of multiplication for two topologies associated with a semifinite trace on von Neumann algebra”, Lobachevskii J. Math., 14 (2004), 17–24 | MR | Zbl

[3] Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, vol. 1, Acad. Press, New York; London; Paris, 1983, 398 pp. | MR | Zbl

[4] Gribanov Yu.I., “O metrizatsii odnogo prostranstva funktsii”, Comment. Math. Univ. Carolinae., 4:1 (1963), 43–46 | MR | Zbl

[5] Nikolskii S.M., “Lineinye uravneniya v lineinykh normirovannykh prostranstvakh”, Izv. AN SSSR. Ser. mat., 7:3 (1943), 147–166

[6] Takesaki M., Theory of operator algebras, vol. 1, Springer, New York; Heidelberg; Berlin, 1979, 415 pp. | MR

[7] Segal I.E., “A non-commutative extension of abstract integration”, Ann. Math., 57:3 (1953), 401–457 | DOI | MR | Zbl

[8] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[9] Terp M., $L^p$-spaces associated with von Neumann algebras, Copenhagen Univ., Copenhagen, 1981, 100 pp.

[10] Yeadon F.J., “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Philos. Soc., 77:1 (1975), 91–102 | DOI | MR | Zbl

[11] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau $-measurable operators”, Pacif. J. Math., 123:2 (1986), 269–300 | MR | Zbl

[12] Ovchinnikov V.I., “O $s$-chislakh izmerimykh operatorov”, Funkts. anal. i ego pril., 4:3 (1970), 78–85 | MR | Zbl

[13] Bikchentaev A.M., “On noncommutative function spaces”, Selected papers in $K$-theory, AMS Transl. Ser. 2, 154, Amer. Math. Soc., Providence (RI), 1992, 179–187

[14] Danford N., Shvarts Dzh.T., Lineinye operatory: Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 874 pp.

[15] Skvortsova G.Sh., Tikhonov O.E., “Vypuklye mnozhestva v nekommutativnykh $L^1$-prostranstvakh, zamknutye v topologii lokalnoi skhodimosti po mere”, Izv. vuzov. Matematika, 1998, no. 8, 48–55 | MR | Zbl

[16] Dodds P.G., Dodds T.K., Sukochev F.A., Tikhonov O.Ye., “A non-commutative Yosida–Hewitt theorem and convex sets of measurable operators closed locally in measure”, Positivity, 9:3 (2005), 457–484 | DOI | MR | Zbl

[17] Ciach L.J., “Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra”, Colloq. Math., 55:1 (1988), 109–121 | MR | Zbl

[18] Dodds P.G., Dodds T.K.-Y., de Pagter B., “Noncommutative Köthe duality”, Trans. Amer. Math. Soc., 339:2 (1993), 717–750 | DOI | MR | Zbl

[19] Skvortsova G.Sh., “O slaboi sekventsialnoi polnote faktor-prostranstv prostranstva integriruemykh operatorov”, Izv. vuzov. Matematika, 2002, no. 9, 71–74 | MR | Zbl

[20] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965, 448 pp.

[21] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR

[22] Hansen F., “An operator inequality”, Math. Ann., 246:3 (1980), 249–250 | DOI | MR | Zbl

[23] Koliha J.J., “Range projections of idempotents in $C^*$-algebras”, Demonstr. Math., 34:1 (2001), 91–103 | MR | Zbl

[24] Bikchentaev A.M., “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov”, Sib. mat. zhurn., 46:1 (2005), 32–45 | MR | Zbl

[25] Bikchentaev A.M., “Ob odnom svoistve $L^p$-prostranstv na polukonechnykh algebrakh fon Neimana”, Mat. zametki, 64:2 (1998), 185–190 | MR | Zbl

[26] Householder A.S., Carpenter J.A., “The singular values of involutory and idempotent matrices”, Numer. Math., 5:3 (1963), 234–237 | DOI | MR | Zbl

[27] Strătilă Ş., Zsidó L., Lectures on von Neumann algebras, Abacus Press, Tunbridge Wells (Kent), 1979, 478 pp. | MR | Zbl

[28] Muratov M.A., “Skhodimosti v koltse izmerimykh operatorov”, Sb. nauch. tr. Tash. un-ta, No 573: Funkts. analiz, Izd-vo TashGU, Tashkent, 1978, 51–58 | MR

[29] Rolewicz S., Metric linear spaces, Monogr. mat., 56, PWN, Warszawa, 1972, 287 pp. | MR | Zbl

[30] Banach S., Théorie des opérations linéaires, Monogr. mat., 1, PWN, Warszawa, 1932, 254 pp. | MR

[31] Arens R., “Linear topological division algebras”, Bull. Amer. Math. Soc., 53 (1947), 623–630 | DOI | MR | Zbl

[32] Źelazko W., Metric generalizations of Banach algebras, Rozpr. Mat., 47, PWN, Warszawa, 1965, 70 pp. | MR

[33] Choda H., “An extremal property of the polar decomposition in von Neumann algebras”, Proc. Japan. Acad., 46:4 (1970), 341–344 | DOI | MR | Zbl

[34] Khelemskii A.Ya., Lektsii po funktsionalnomu analizu, Izd-vo MTsNMO, M., 2004, 552 pp.