Local Convergence in Measure on Semifinite von Neumann Algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 41-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathcal M$ is a von Neumann algebra of operators on a Hilbert space $\mathcal H$ and $\tau $ is a faithful normal semifinite trace on $\mathcal M$. The set $\widetilde {\mathcal M}$ of all $\tau $-measurable operators with the topology $t_{\tau }$ of convergence in measure is a topological $*$-algebra. The topologies of $\tau $-local and weakly $\tau $-local convergence in measure are obtained by localizing $t_{\tau }$ and are denoted by $t_{\tau \mathrm l}$ and $t_{\mathrm w\tau \mathrm l}$, respectively. The set $\widetilde {\mathcal M}$ with any of these topologies is a topological vector space. The continuity of certain operations and the closedness of certain classes of operators in $\widetilde {\mathcal M}$ with respect to the topologies $t_{\tau \mathrm l}$ and $t_{\mathrm w\tau \mathrm l}$ are proved. S.M. Nikol'skii's theorem (1943) is extended from the algebra $\mathcal B(\mathcal H)$ to semifinite von Neumann algebras. The following theorem is proved: {\itshape For a von Neumann algebra $\mathcal M$ with a faithful normal semifinite trace $\tau $, the following conditions are equivalent\textup : \textup {(i)} the algebra $\mathcal M$ is finite\textup ; \textup {(ii)} $t_{\mathrm w\tau \mathrm l}= t_{\tau \mathrm l}$\textup ; \textup {(iii)} the multiplication is jointly $t_{\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}\times \widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$\textup ; \textup {(iv)} the multiplication is jointly $t_{\mathrm w\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}\times \widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$\textup ; \textup {(v)} the involution is $t_{\tau \mathrm l}$-continuous from $\widetilde {\mathcal M}$ to $\widetilde {\mathcal M}$.}
@article{TM_2006_255_a3,
     author = {A. M. Bikchentaev},
     title = {Local {Convergence} in {Measure} on {Semifinite} von {Neumann} {Algebras}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a3/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Local Convergence in Measure on Semifinite von Neumann Algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 41
EP  - 54
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a3/
LA  - ru
ID  - TM_2006_255_a3
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Local Convergence in Measure on Semifinite von Neumann Algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 41-54
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a3/
%G ru
%F TM_2006_255_a3
A. M. Bikchentaev. Local Convergence in Measure on Semifinite von Neumann Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 41-54. http://geodesic.mathdoc.fr/item/TM_2006_255_a3/