Polyharmonic Dirichlet Problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 19-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

A certain Dirichlet problem for the inhomogeneous polyharmonic equation is explicitly solved in the unit disc of the complex plane. The solution is obtained by modifying the related Cauchy–Pompeiu representation with the help of the polyharmonic Green function.
@article{TM_2006_255_a2,
     author = {H. Begehr and Vu Thi Ngoc Ha and Zh. Zhang},
     title = {Polyharmonic {Dirichlet} {Problems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {19--40},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a2/}
}
TY  - JOUR
AU  - H. Begehr
AU  - Vu Thi Ngoc Ha
AU  - Zh. Zhang
TI  - Polyharmonic Dirichlet Problems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 19
EP  - 40
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a2/
LA  - en
ID  - TM_2006_255_a2
ER  - 
%0 Journal Article
%A H. Begehr
%A Vu Thi Ngoc Ha
%A Zh. Zhang
%T Polyharmonic Dirichlet Problems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 19-40
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a2/
%G en
%F TM_2006_255_a2
H. Begehr; Vu Thi Ngoc Ha; Zh. Zhang. Polyharmonic Dirichlet Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 19-40. http://geodesic.mathdoc.fr/item/TM_2006_255_a2/

[1] Begehr H., Complex analytic methods for partial differential equations. An introductory text, World Sci., Singapore, 1994 | MR | Zbl

[2] Begehr H., “Orthogonal decompositions of the function space $L_2(\overline D;\mathbb C)$”, J. reine und angew. Math., 549 (2002), 191–219 | MR | Zbl

[3] Begehr H., “Combined integral representations”, Advances in analysis, Proc. 4th Intern. ISAAC Congr. (Toronto, 2003), eds. H. Begehr et al., World Sci., Singapore, 2005, 187–195 | MR | Zbl

[4] Begehr H., Boundary value problems in complex analysis, Lecture notes from a mini-course at the Simón Bolivar Univ., Caracas, May 2004: Preprint. FU Berlin, 2004; “Pt. I”, Bol. Asoc. Mat. Venez., 12 (2005), 65–85 ; “Pt. II” (to appear) | MR | Zbl

[5] Begehr H., Hile G.N., “A hierarchy of integral operators”, Rocky Mount. J. Math., 27 (1997), 669–706 | DOI | MR | Zbl

[6] Begehr H., Kumar A., “Boundary value problems for the inhomogeneous polyanalytic equation. I”, Analysis, 25 (2005), 55–71 ; “II” (to appear) | MR | Zbl

[7] Begehr H., Schmersau D., “The Schwarz problem for polyanalytic functions”, Ztschr. Anal. und Anwend., 24 (2005), 341–351 | DOI | MR | Zbl

[8] Begehr H., Vanegas C.J., “Iterated Neumann problem for the higher order Poisson equation”, Math. Nachr., 279 (2006), 38–57 | DOI | MR | Zbl

[9] Vu T.N.H., Helmholtz operator in quaternionic analysis, PhD Thes., FU Berlin, 2005; http://www.diss.fu-berlin.de/2005/61/index.html