@article{TM_2006_255_a15,
author = {C. D. Pagani and D. Pierotti},
title = {Variational {Linear} {Problems} in {Wave{\textendash}Obstacle} {Interaction}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {216--226},
year = {2006},
volume = {255},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a15/}
}
C. D. Pagani; D. Pierotti. Variational Linear Problems in Wave–Obstacle Interaction. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 216-226. http://geodesic.mathdoc.fr/item/TM_2006_255_a15/
[1] Kuznetsov N.G., Maz'ya V.G., Vainberg V., Linear water waves, Cambridge Univ. Press, Cambridge, 2002 | MR
[2] Livshits M., Maz'ya V.G., “Solvability of the two-dimensional Kelvin–Neumann problem for a submerged circular cylinder”, Appl. Anal., 64 (1997), 1–5 | DOI | MR | Zbl
[3] Pagani C.D., Pierotti D., “The Neumann–Kelvin problem revisited”, Appl. Anal., 85 (2006), 277–292 | DOI | MR | Zbl
[4] Pierotti D., “On unique solvability and regularity in the linearized two-dimensional wave resistance problem”, Quart. Appl. Math., 61:4 (2003), 639–655 | MR | Zbl
[5] Pagani C.D., Pierotti D., “The subcritical motion of a semisubmerged body: solvability of the free boundary problem”, SIAM J. Math. Anal., 36 (2004), 69–93 | DOI | MR | Zbl
[6] Pierotti D., Uniqueness and trapped modes in the linear problem of the steady flow past a submerged hollow, Preprint N 636/P, Politec. Milano, 2005 ; Wave Motion (to appear) | MR
[7] Pagani C.D., Pierotti D., “The Neumann–Kelvin problem for a beam”, J. Math. Anal. and Appl., 240 (1999), 60–79 | DOI | MR | Zbl