Variational Linear Problems in Wave--Obstacle Interaction
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 216-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the problem of the steady two-dimensional flow past fixed disturbances in an open channel of finite depth. We consider different types of obstacles: submerged or surface-piercing bodies and localized perturbations of a horizontal bottom. By a special variational approach, we prove the unique solvability of the linearized problem for supercritical velocities of the unperturbed flow. We also discuss extensions of the variational method to the limit case of a submerged beam and to subcritical velocities.
@article{TM_2006_255_a15,
     author = {C. D. Pagani and D. Pierotti},
     title = {Variational {Linear} {Problems} in {Wave--Obstacle} {Interaction}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {216--226},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a15/}
}
TY  - JOUR
AU  - C. D. Pagani
AU  - D. Pierotti
TI  - Variational Linear Problems in Wave--Obstacle Interaction
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 216
EP  - 226
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a15/
LA  - en
ID  - TM_2006_255_a15
ER  - 
%0 Journal Article
%A C. D. Pagani
%A D. Pierotti
%T Variational Linear Problems in Wave--Obstacle Interaction
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 216-226
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a15/
%G en
%F TM_2006_255_a15
C. D. Pagani; D. Pierotti. Variational Linear Problems in Wave--Obstacle Interaction. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 216-226. http://geodesic.mathdoc.fr/item/TM_2006_255_a15/

[1] Kuznetsov N.G., Maz'ya V.G., Vainberg V., Linear water waves, Cambridge Univ. Press, Cambridge, 2002 | MR

[2] Livshits M., Maz'ya V.G., “Solvability of the two-dimensional Kelvin–Neumann problem for a submerged circular cylinder”, Appl. Anal., 64 (1997), 1–5 | DOI | MR | Zbl

[3] Pagani C.D., Pierotti D., “The Neumann–Kelvin problem revisited”, Appl. Anal., 85 (2006), 277–292 | DOI | MR | Zbl

[4] Pierotti D., “On unique solvability and regularity in the linearized two-dimensional wave resistance problem”, Quart. Appl. Math., 61:4 (2003), 639–655 | MR | Zbl

[5] Pagani C.D., Pierotti D., “The subcritical motion of a semisubmerged body: solvability of the free boundary problem”, SIAM J. Math. Anal., 36 (2004), 69–93 | DOI | MR | Zbl

[6] Pierotti D., Uniqueness and trapped modes in the linear problem of the steady flow past a submerged hollow, Preprint N 636/P, Politec. Milano, 2005 ; Wave Motion (to appear) | MR

[7] Pagani C.D., Pierotti D., “The Neumann–Kelvin problem for a beam”, J. Math. Anal. and Appl., 240 (1999), 60–79 | DOI | MR | Zbl