Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 180-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the limiting case of the Krichever construction of orthogonal curvilinear coordinate systems when the spectral curve becomes singular. We show that when the curve is reducible and all its irreducible components are rational curves, the construction procedure reduces to solving systems of linear equations and to simple computations with elementary functions. We also demonstrate how well-known coordinate systems, such as polar coordinates, cylindrical coordinates, and spherical coordinates in Euclidean spaces, fit in this scheme.
@article{TM_2006_255_a13,
     author = {A. E. Mironov and I. A. Taimanov},
     title = {Orthogonal {Curvilinear} {Coordinate} {Systems} {Corresponding} to {Singular} {Spectral} {Curves}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {180--196},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a13/}
}
TY  - JOUR
AU  - A. E. Mironov
AU  - I. A. Taimanov
TI  - Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 180
EP  - 196
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a13/
LA  - ru
ID  - TM_2006_255_a13
ER  - 
%0 Journal Article
%A A. E. Mironov
%A I. A. Taimanov
%T Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 180-196
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a13/
%G ru
%F TM_2006_255_a13
A. E. Mironov; I. A. Taimanov. Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 180-196. http://geodesic.mathdoc.fr/item/TM_2006_255_a13/

[1] Akhmetshin A.A., Volvovskii Yu.S., Krichever I.M., “Diskretnye analogi metrik Darbu–Egorova”, Tr. MIAN, 225, 1999, 21–45 | MR | Zbl

[2] Darboux G., Leçons sur le systèmes ortogonaux et les coordonnées curvilignes, Gauthier–Villars, Paris, 1910 | Zbl

[3] Krichever I.M., “Algebro-geometricheskie $n$-ortogonalnye krivolineinye sistemy koordinat i resheniya uravnenii assotsiativnosti”, Funkts. anal. i ego pril., 31:1 (1997), 32–50 | MR | Zbl

[4] Mokhov O.I., “Soglasovannye metriki postoyannoi rimanovoi krivizny: lokalnaya geometriya, nelineinye uravneniya i integriruemost”, Funkts. anal. i ego pril., 36:3 (2002), 36–47 | MR | Zbl

[5] Serre J.-P., Algebraic groups and class fields, Grad. Texts Math., 117, Springer, New York, 1988 | MR | Zbl

[6] Taimanov I.A., “O dvumernykh konechnozonnykh potentsialnykh operatorakh Shredingera i Diraka s osobymi spektralnymi krivymi”, Sib. mat. zhurn., 44:4 (2003), 870–882 | MR | Zbl

[7] Taimanov I.A., “Finite-gap theory of the Clifford torus”, Intern. Math. Res. Not., 2005, no. 2, 103–120 | DOI | MR | Zbl

[8] Talalaev D.V., Chervov A.V., “Sistema Khitchina na osobykh krivykh”, TMF, 140:2 (2004), 179–215 | MR | Zbl

[9] Zakharov V.E., “Description of the $n$-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations”, Duke Math. J., 94 (1998), 103–139 | DOI | MR | Zbl