Entropy Numbers in Weighted Function Spaces. The Case of Intermediate Weights
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 170-179

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact asymptotic behavior of the entropy numbers of compact embeddings of weighted Besov spaces is known in many cases, in particular for power-type weights and logarithmic weights. Here we consider intermediate weights that are strictly between these two scales; a typical example is $w(x)=\exp\bigl(\sqrt {\log (1+|x|)}\,\bigr)$. For such weights we prove almost optimal estimates of the entropy numbers $e_k\bigl (\mathrm{id}:B^{s_1}_{p_1 q_1}(\mathbb R^d,w)\to B^{s_2}_{p_2 q_2}(\mathbb R^d)\bigr)$.
@article{TM_2006_255_a12,
     author = {T. K\"uhn},
     title = {Entropy {Numbers} in {Weighted} {Function} {Spaces.} {The} {Case} of {Intermediate} {Weights}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {170--179},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a12/}
}
TY  - JOUR
AU  - T. Kühn
TI  - Entropy Numbers in Weighted Function Spaces. The Case of Intermediate Weights
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 170
EP  - 179
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a12/
LA  - en
ID  - TM_2006_255_a12
ER  - 
%0 Journal Article
%A T. Kühn
%T Entropy Numbers in Weighted Function Spaces. The Case of Intermediate Weights
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 170-179
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a12/
%G en
%F TM_2006_255_a12
T. Kühn. Entropy Numbers in Weighted Function Spaces. The Case of Intermediate Weights. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 170-179. http://geodesic.mathdoc.fr/item/TM_2006_255_a12/