Entropy Numbers in Weighted Function Spaces. The Case of Intermediate Weights
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 170-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact asymptotic behavior of the entropy numbers of compact embeddings of weighted Besov spaces is known in many cases, in particular for power-type weights and logarithmic weights. Here we consider intermediate weights that are strictly between these two scales; a typical example is $w(x)=\exp\bigl(\sqrt {\log (1+|x|)}\,\bigr)$. For such weights we prove almost optimal estimates of the entropy numbers $e_k\bigl (\mathrm{id}:B^{s_1}_{p_1 q_1}(\mathbb R^d,w)\to B^{s_2}_{p_2 q_2}(\mathbb R^d)\bigr)$.
@article{TM_2006_255_a12,
     author = {T. K\"uhn},
     title = {Entropy {Numbers} in {Weighted} {Function} {Spaces.} {The} {Case} of {Intermediate} {Weights}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {170--179},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a12/}
}
TY  - JOUR
AU  - T. Kühn
TI  - Entropy Numbers in Weighted Function Spaces. The Case of Intermediate Weights
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 170
EP  - 179
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a12/
LA  - en
ID  - TM_2006_255_a12
ER  - 
%0 Journal Article
%A T. Kühn
%T Entropy Numbers in Weighted Function Spaces. The Case of Intermediate Weights
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 170-179
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a12/
%G en
%F TM_2006_255_a12
T. Kühn. Entropy Numbers in Weighted Function Spaces. The Case of Intermediate Weights. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 170-179. http://geodesic.mathdoc.fr/item/TM_2006_255_a12/

[1] Carl B., Stephani I., Entropy, compactness and the approximation of operators, Cambridge Univ. Press, Cambridge, 1990 | MR

[2] Edmunds D.E., Triebel H., Function spaces, entropy numbers, differential operators, Cambridge, 1996 | MR

[3] Haroske D., “Embeddings of some weighted function spaces on $\mathbb R^n$; entropy and approximation numbers. A survey of some recent results”, An. Univ. Craiova. Ser. Mat. Inform., 24 (1997), 1–44 | MR | Zbl

[4] Haroske D.D., Triebel H., “Wavelet bases and entropy numbers in weighted function spaces”, Math. Nachr., 278 (2005), 108–132 | DOI | MR | Zbl

[5] König H., Eigenvalue distribution of compact operators, Birkhäuser, Basel, 1986 | MR

[6] Kühn T., “A lower estimate for entropy numbers”, J. Approx. Theory, 110 (2001), 120–124 | DOI | MR | Zbl

[7] Kühn T., “Entropy numbers of general diagonal operators”, Rev. Mat. Complut., 18 (2005), 479–491 | MR | Zbl

[8] Kühn T., Leopold H.-G., Sickel W., Skrzypczak L., “Entropy numbers of embeddings of weighted Besov spaces”, Constr. Approx., 23 (2006), 61–77 | DOI | MR | Zbl

[9] Kühn T., Leopold H.-G., Sickel W., Skrzypczak L., “Entropy numbers of embeddings of weighted Besov spaces. II”, Proc. Edinburgh Math. Soc., 49 (2006), 331–359 | DOI | MR | Zbl

[10] Kühn T., Leopold H.-G., Sickel W., Skrzypczak L., “Entropy numbers of embeddings of weighted Besov spaces. III: Weights of logarithmic type”, Math. Ztschr., 255 (2007), 1–15 | DOI | MR | Zbl

[11] Peetre J., New thoughts on Besov spaces, Duke Univ. Press, Durham, 1976 | MR | Zbl

[12] Pietsch A., Operator ideals, VEB Dtsch. Verl. Wissensch., Berlin, 1978 ; North-Holland, Amsterdam; New York, 1980 | MR | Zbl | Zbl

[13] Schütt C., “Entropy numbers of diagonal operators between symmetric Banach spaces”, J. Approx. Theory, 40 (1984), 121–128 | DOI | MR | Zbl

[14] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 | MR | Zbl