Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_255_a10, author = {A. A. Ilyin}, title = {Lieb--Thirring {Integral} {Inequalities} and {Sharp} {Bounds} for the {Dimension} of the {Attractor} of the {Navier--Stokes} {Equations} with {Friction}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {146--160}, publisher = {mathdoc}, volume = {255}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a10/} }
TY - JOUR AU - A. A. Ilyin TI - Lieb--Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier--Stokes Equations with Friction JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 146 EP - 160 VL - 255 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_255_a10/ LA - ru ID - TM_2006_255_a10 ER -
%0 Journal Article %A A. A. Ilyin %T Lieb--Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier--Stokes Equations with Friction %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 146-160 %V 255 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_255_a10/ %G ru %F TM_2006_255_a10
A. A. Ilyin. Lieb--Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier--Stokes Equations with Friction. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 146-160. http://geodesic.mathdoc.fr/item/TM_2006_255_a10/
[1] Babin A.V., Vishik M.I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[2] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed., Springer, New York, 1997 | MR
[3] Ladyzhenskaya O.A., Attractors for semigroups and evolution equations, Leizioni Lincei, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[4] Chepyzhov V.V., Vishik M.I., Attractors for equations of mathematical physics, AMS Colloq. Publ., 49, Amer. Math. Soc., Providence (RI), 2002 | MR | Zbl
[5] Babin A.V., “Attractors of Navier–Stokes equations”, Handbook of mathematical fluid dynamics, vol. 2, North-Holland, Amsterdam, 2003, 169–222 | MR | Zbl
[6] Chepyzhov V.V., Ilyin A.A., “On the fractal dimension of invariant sets; applications to Navier–Stokes equations”, Discr. and Contin. Dyn. Syst., 10:1–2 (2004), 117–135 | MR | Zbl
[7] Ilyin A.A., “Attractors for Navier–Stokes equations in domains with finite measure”, Nonlin. Anal. Theory Meth. and Appl., 27 (1996), 605–616 | DOI | MR | Zbl
[8] Constantin P., Foias C., Temam R., “On the dimension of the attractors in two-dimensional turbulence”, Physica D, 30 (1988), 284–296 | DOI | MR | Zbl
[9] Meshalkin L.D., Sinai Ya.G., “Issledovanie ustoichivosti statsionarnogo resheniya odnoi sistemy uravnenii ploskogo dvizheniya neszhimaemoi vyazkoi zhidkosti”, PMM, 25 (1961), 1140–1143 | MR | Zbl
[10] Yudovich V.I., “Primer rozhdeniya vtorichnogo statsionarnogo ili periodicheskogo techeniya pri potere ustoichivosti laminarnogo techeniya vyazkoi neszhimaemoi zhidkosti”, PMM, 29 (1965), 453–467 | Zbl
[11] Liu V.X., “A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier–Stokes equations”, Commun. Math. Phys., 158 (1993), 327–339 | DOI | MR | Zbl
[12] Ziane M., “Optimal bounds on the dimension of attractors for the Navier–Stokes equations”, Physica D, 105 (1997), 1–19 | DOI | MR | Zbl
[13] Ilin A.A., “Integralnye neravenstva Liba–Tirringa i ikh prilozheniya k attraktoram uravnenii Nave–Stoksa”, Mat. sb., 196:1 (2005), 33–66 | MR
[14] Dymnikov V.P., Filatov A.N., Mathematics of climate modelling, Birkhäuser, Boston, 1997 | MR | Zbl
[15] Pedloski Dzh., Geofizicheskaya gidrodinamika, t. 1, 2, Mir, M., 1984
[16] Ilyin A.A., Miranville A., Titi E.S., “Small viscosity sharp estimates for the global attractor of the 2-D damped-driven Navier–Stokes equations”, Commun. Math. Sci., 2:3 (2004), 403–426 | MR | Zbl
[17] Ilyin A.A., Titi E.S., “Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier–Stokes equations”, J. Nonlin. Sci., 16:3 (2006), 233–253 | DOI | MR | Zbl
[18] Lieb E., Thirring W., “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in mathematical physics, Essays in honor of V. Bargmann, Princeton Univ. Press, Princeton, 1976, 269–303
[19] Lieb E., “On characteristic exponents in turbulence”, Commun. Math. Phys., 92 (1984), 473–480 | DOI | MR | Zbl
[20] Ghidaglia J.M., Marion M., Temam R., “Generalization of the Sobolev–Lieb–Thirring inequalities and applications to the dimension of attractors”, Diff. and Integr. Equat., 1 (1988), 1–21 | MR
[21] Constantin P., Foias C., “Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for the 2D Navier–Stokes equations”, Commun. Pure and Appl. Math., 38 (1985), 1–27 | DOI | MR | Zbl
[22] Liu V.X., “Remarks on the Navier–Stokes equations on the two and three dimensional torus”, Commun. Part. Diff. Equat., 19 (1994), 873–900 | DOI | MR | Zbl