Lieb--Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier--Stokes Equations with Friction
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 146-160

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional Navier–Stokes system with friction is considered in a large rectangular periodic domain with area on the order of $\alpha^{-1}$, $\alpha \to 0$. Bounds for the dimension of the attractor are obtained, which are sharp both as $\alpha\to 0$ and $\nu\to 0$, where $\nu$ is the viscosity coefficient.
@article{TM_2006_255_a10,
     author = {A. A. Ilyin},
     title = {Lieb--Thirring {Integral} {Inequalities} and {Sharp} {Bounds} for the {Dimension} of the {Attractor} of the {Navier--Stokes} {Equations} with {Friction}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {146--160},
     publisher = {mathdoc},
     volume = {255},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_255_a10/}
}
TY  - JOUR
AU  - A. A. Ilyin
TI  - Lieb--Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier--Stokes Equations with Friction
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 146
EP  - 160
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_255_a10/
LA  - ru
ID  - TM_2006_255_a10
ER  - 
%0 Journal Article
%A A. A. Ilyin
%T Lieb--Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier--Stokes Equations with Friction
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 146-160
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_255_a10/
%G ru
%F TM_2006_255_a10
A. A. Ilyin. Lieb--Thirring Integral Inequalities and Sharp Bounds for the Dimension of the Attractor of the Navier--Stokes Equations with Friction. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and nonlinear analysis, Tome 255 (2006), pp. 146-160. http://geodesic.mathdoc.fr/item/TM_2006_255_a10/