Weak Infinitesimal Hilbert's 16th~Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 215-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following weak infinitesimal Hilbert's 16th problem is solved. Given a real polynomial $H$ in two variables, denote by $M(H,m)$ the maximal number possessing the following property: for any generic set $\{\gamma _i\}$ of at most $M(H,m)$ compact connected components of the level lines $H=c_i$ of the polynomial $H$, there exists a form $\omega =P\,dx+Q\,dy$ with polynomials $P$ and $Q$ of degrees no greater than $m$ such that the integral $\int _{H=c}\omega$ has nonmultiple zeros on the connected components $\{\gamma _i\}$. An upper bound for the number $M(H,m)$ in terms of the degree $n$ of the polynomial $H$ is found; this estimate is sharp for almost every polynomial $H$ of degree $n$. A multidimensional version of this result is proved. The relation between the weak infinitesimal Hilbert's 16th problem and the following question is discussed: How many limit cycles can a polynomial vector field of degree $n$ have if it is close to a Hamiltonian vector field?
@article{TM_2006_254_a9,
     author = {I. A. Khovanskaya (Pushkar')},
     title = {Weak {Infinitesimal} {Hilbert's} {16th~Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {215--246},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a9/}
}
TY  - JOUR
AU  - I. A. Khovanskaya (Pushkar')
TI  - Weak Infinitesimal Hilbert's 16th~Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 215
EP  - 246
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a9/
LA  - ru
ID  - TM_2006_254_a9
ER  - 
%0 Journal Article
%A I. A. Khovanskaya (Pushkar')
%T Weak Infinitesimal Hilbert's 16th~Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 215-246
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a9/
%G ru
%F TM_2006_254_a9
I. A. Khovanskaya (Pushkar'). Weak Infinitesimal Hilbert's 16th~Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 215-246. http://geodesic.mathdoc.fr/item/TM_2006_254_a9/

[1] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii: Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[2] Varchenko A. N., “Otsenka chisla nulei abeleva integrala, zavisyaschego ot parametra, i predelnye tsikly”, Funkts. anal. i ego pril., 18:2 (1984), 14–25 | MR | Zbl

[3] Ilyashenko Yu. S., “Primer uravnenii $dw/dz=P_n(z,w)/Q_n(z,w)$, imeyuschikh schetnoe chislo predelnykh tsiklov i skol ugodno bolshoi zhanr po Petrovskomu–Landisu”, Mat. sb., 80(122):3(11) (1969), 388–404

[4] Ilyashenko Yu. S., “Vozniknovenie predelnykh tsiklov pri vozmuschenii uravneniya $dw/dz=-R_z/R_w$, gde $R(z,w)$ – mnogochlen”, Mat. sb., 78(120):3 (1969), 360–373

[5] Petrov G. S., “O chisle nulei polnykh ellipticheskikh integralov”, Funkts. anal. i ego pril., 18:2 (1984), 73–74 | MR | Zbl

[6] Petrovskii I. G., Landis E. M., “O chisle predelnykh tsiklov uravneniya $dy/dx=P(x,y)/Q(x,y)$, gde $P$ i $Q$ – mnogochleny 2-i stepeni”, Mat. sb., 37(79):2 (1955), 209–250 | MR

[7] Pontryagin L. S., “O dinamicheskikh sistemakh, blizkikh k gamiltonovym”, ZhETF, 4:8 (1934), 234–238

[8] Pushkar I. A., “Mnogomernoe obobschenie teoremy Ilyashenko ob abelevykh integralakh”, Funkts. anal. i ego pril., 31:2 (1997), 34–44 | MR | Zbl

[9] Pushkar I. A., “O predelnykh tsiklakh, rozhdayuschikhsya pri vozmuschenii gamiltonovykh sistem”, UMN, 57:5(347) (2002), 161–162 | MR | Zbl

[10] Khovanskii A. G., “Veschestvennye analiticheskie mnogoobraziya so svoistvom konechnosti i kompleksnye abelevy integraly”, Funkts. anal. i ego pril., 18:2 (1984), 40–50 | MR

[11] Gavrilov L., “Petrov modules and zeros of abelian integrals”, Bull. Sci. Math., 122:8 (1998), 571–584 | DOI | MR | Zbl

[12] Yu. Ilyashenko, S. Yakovenko (ed.), Concerning the Hilbert 16th problem, Amer. Math. Soc., Providence (RI), 1995 | MR

[13] Mucino-Raymundo J., “Deformations of holomorphic foliations having a meromorphic first integral”, J. Reine und Angew. Math., 461 (1995), 189–219 | MR | Zbl

[14] Novikov D., Yakovenko S., “Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems”, Electron. Res. Announc. Amer. Math. Soc., 5:8 (1999), 55–65 | DOI | MR | Zbl

[15] Yakovenko S., “A geometric proof of the Bautin theorem”, Concerning the Hilbert 16th problem, Amer. Math. Soc., Providence (RI), 1995, 203–219 | MR | Zbl