Weak Infinitesimal Hilbert's 16th~Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 215-246

Voir la notice de l'article provenant de la source Math-Net.Ru

The following weak infinitesimal Hilbert's 16th problem is solved. Given a real polynomial $H$ in two variables, denote by $M(H,m)$ the maximal number possessing the following property: for any generic set $\{\gamma _i\}$ of at most $M(H,m)$ compact connected components of the level lines $H=c_i$ of the polynomial $H$, there exists a form $\omega =P\,dx+Q\,dy$ with polynomials $P$ and $Q$ of degrees no greater than $m$ such that the integral $\int _{H=c}\omega$ has nonmultiple zeros on the connected components $\{\gamma _i\}$. An upper bound for the number $M(H,m)$ in terms of the degree $n$ of the polynomial $H$ is found; this estimate is sharp for almost every polynomial $H$ of degree $n$. A multidimensional version of this result is proved. The relation between the weak infinitesimal Hilbert's 16th problem and the following question is discussed: How many limit cycles can a polynomial vector field of degree $n$ have if it is close to a Hamiltonian vector field?
@article{TM_2006_254_a9,
     author = {I. A. Khovanskaya (Pushkar')},
     title = {Weak {Infinitesimal} {Hilbert's} {16th~Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {215--246},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a9/}
}
TY  - JOUR
AU  - I. A. Khovanskaya (Pushkar')
TI  - Weak Infinitesimal Hilbert's 16th~Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 215
EP  - 246
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a9/
LA  - ru
ID  - TM_2006_254_a9
ER  - 
%0 Journal Article
%A I. A. Khovanskaya (Pushkar')
%T Weak Infinitesimal Hilbert's 16th~Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 215-246
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a9/
%G ru
%F TM_2006_254_a9
I. A. Khovanskaya (Pushkar'). Weak Infinitesimal Hilbert's 16th~Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 215-246. http://geodesic.mathdoc.fr/item/TM_2006_254_a9/