A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 192-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that a generic polynomial vector field of degree higher than $2$ on the plane has countably many complex limit cycles that are homologically independent on the leaves. In the paper, a similar assertion is proved for analytic vector fields on the complex plane. The proof is based on the results of D. S. Volk and T. S. Firsova.
@article{TM_2006_254_a7,
     author = {T. I. Golenishcheva-Kutuzova},
     title = {A~Generic {Analytic} {Foliation} in~$\mathbb C^2$ {Has} {Infinitely} {Many} {Cylindrical} {Leaves}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {192--195},
     publisher = {mathdoc},
     volume = {254},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a7/}
}
TY  - JOUR
AU  - T. I. Golenishcheva-Kutuzova
TI  - A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 192
EP  - 195
VL  - 254
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_254_a7/
LA  - ru
ID  - TM_2006_254_a7
ER  - 
%0 Journal Article
%A T. I. Golenishcheva-Kutuzova
%T A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 192-195
%V 254
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_254_a7/
%G ru
%F TM_2006_254_a7
T. I. Golenishcheva-Kutuzova. A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 192-195. http://geodesic.mathdoc.fr/item/TM_2006_254_a7/

[1] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl

[2] Firsova T.S., “Topologiya analiticheskikh sloenii v $\mathbb C^2$. Svoistvo Kupki–Smeila”, Tr. MIAN, 254 (2006), 162–180 | MR

[3] Ilyashenko Yu.S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. sem. im. I.G. Petrovskogo, 4 (1978), 83–136 | MR | Zbl

[4] Volk D.S., “Plotnost separatrisnykh svyazok v prostranstve polinomialnykh sloenii v $\mathbb C\mathrm P^2$”, Tr. MIAN, 254 (2006), 181–191 | MR

[5] Chaperon M., “Generic complex flows”, Complex geometry II: Contemporary aspects of mathematics and physics, Hermann, Paris, 2004, 71–79 | MR | Zbl