Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_254_a7, author = {T. I. Golenishcheva-Kutuzova}, title = {A~Generic {Analytic} {Foliation} in~$\mathbb C^2$ {Has} {Infinitely} {Many} {Cylindrical} {Leaves}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {192--195}, publisher = {mathdoc}, volume = {254}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a7/} }
TY - JOUR AU - T. I. Golenishcheva-Kutuzova TI - A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 192 EP - 195 VL - 254 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_254_a7/ LA - ru ID - TM_2006_254_a7 ER -
%0 Journal Article %A T. I. Golenishcheva-Kutuzova %T A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 192-195 %V 254 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_254_a7/ %G ru %F TM_2006_254_a7
T. I. Golenishcheva-Kutuzova. A~Generic Analytic Foliation in~$\mathbb C^2$ Has Infinitely Many Cylindrical Leaves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 192-195. http://geodesic.mathdoc.fr/item/TM_2006_254_a7/
[1] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl
[2] Firsova T.S., “Topologiya analiticheskikh sloenii v $\mathbb C^2$. Svoistvo Kupki–Smeila”, Tr. MIAN, 254 (2006), 162–180 | MR
[3] Ilyashenko Yu.S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. sem. im. I.G. Petrovskogo, 4 (1978), 83–136 | MR | Zbl
[4] Volk D.S., “Plotnost separatrisnykh svyazok v prostranstve polinomialnykh sloenii v $\mathbb C\mathrm P^2$”, Tr. MIAN, 254 (2006), 181–191 | MR
[5] Chaperon M., “Generic complex flows”, Complex geometry II: Contemporary aspects of mathematics and physics, Hermann, Paris, 2004, 71–79 | MR | Zbl