@article{TM_2006_254_a7,
author = {T. I. Golenishcheva-Kutuzova},
title = {A~Generic {Analytic} {Foliation} in~$\mathbb C^2$ {Has} {Infinitely} {Many} {Cylindrical} {Leaves}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {192--195},
year = {2006},
volume = {254},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2006_254_a7/}
}
TY - JOUR AU - T. I. Golenishcheva-Kutuzova TI - A Generic Analytic Foliation in $\mathbb C^2$ Has Infinitely Many Cylindrical Leaves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 192 EP - 195 VL - 254 UR - http://geodesic.mathdoc.fr/item/TM_2006_254_a7/ LA - ru ID - TM_2006_254_a7 ER -
T. I. Golenishcheva-Kutuzova. A Generic Analytic Foliation in $\mathbb C^2$ Has Infinitely Many Cylindrical Leaves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear analytic differential equations, Tome 254 (2006), pp. 192-195. http://geodesic.mathdoc.fr/item/TM_2006_254_a7/
[1] Ilyashenko Yu., “Centennial history of Hilbert's 16th problem”, Bull. Amer. Math. Soc., 39:3 (2002), 301–354 | DOI | MR | Zbl
[2] Firsova T.S., “Topologiya analiticheskikh sloenii v $\mathbb C^2$. Svoistvo Kupki–Smeila”, Tr. MIAN, 254 (2006), 162–180 | MR
[3] Ilyashenko Yu.S., “Topologiya fazovykh portretov analiticheskikh differentsialnykh uravnenii na kompleksnoi proektivnoi ploskosti”, Tr. sem. im. I.G. Petrovskogo, 4 (1978), 83–136 | MR | Zbl
[4] Volk D.S., “Plotnost separatrisnykh svyazok v prostranstve polinomialnykh sloenii v $\mathbb C\mathrm P^2$”, Tr. MIAN, 254 (2006), 181–191 | MR
[5] Chaperon M., “Generic complex flows”, Complex geometry II: Contemporary aspects of mathematics and physics, Hermann, Paris, 2004, 71–79 | MR | Zbl