Contact Quasiconformal Immersions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 81-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Contact immersions of contact manifolds endowed with the associated Carnot–Carathéodory (CC) metric (for example, immersions of the Heisenberg group $H^3\sim \mathbb R^3_{\mathrm {CC}}$ in itself) are considered. It is assumed that the manifolds have the same dimension and the immersions are quasiconformal with respect to the CC metric. The main assertion is as follows: A quasiconformal immersion of the Heisenberg group in itself, just as a quasiconformal immersion of any contact manifold of conformally parabolic type in a simply connected contact manifold, is globally injective; i.e., such an immersion is an embedding, which, in addition, is surjective in the case of the Heisenberg group. Thus, the global homeomorphism theorem, which is well known in the space theory of quasiconformal mappings, also holds in the contact case.
@article{TM_2006_253_a6,
     author = {V. A. Zorich},
     title = {Contact {Quasiconformal} {Immersions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {81--87},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a6/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - Contact Quasiconformal Immersions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 81
EP  - 87
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a6/
LA  - ru
ID  - TM_2006_253_a6
ER  - 
%0 Journal Article
%A V. A. Zorich
%T Contact Quasiconformal Immersions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 81-87
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a6/
%G ru
%F TM_2006_253_a6
V. A. Zorich. Contact Quasiconformal Immersions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 81-87. http://geodesic.mathdoc.fr/item/TM_2006_253_a6/

[1] Lavrentev M.A., “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, DAN SSSR, 20 (1938), 241–242

[2] Zorich V.A., “Teorema M.A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Mat. sb., 74 (1967), 417–433 | Zbl

[3] Zorich V.A., “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Collect. surv. 1960–1990, Lect. Notes Math., 1508, Springer, Berlin, 1992, 131–148 | MR

[4] Zorich V.A., “Kvazikonformnye otobrazheniya i asimptoticheskaya geometriya mnogoobrazii”, UMN, 57:3 (2002), 3–28 | MR | Zbl

[5] Gromov M., “Hyperbolic manifolds, groups and actions”, Riemann surfaces and related topics, Proc. Conf. (Stony Brook, 1978), Ann. Math. Stud., 97, Princeton Univ. Press, Princeton (NJ), 1981, 183–213 | MR

[6] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, With appendices by M. Katz, P. Pansu, S. Semmes, Birkhäuser, Boston; Basel; Berlin, 1999 | MR | Zbl

[7] Zorich V.A., “Kvazikonformnye pogruzheniya rimanovykh mnogoobrazii i teorema pikarovskogo tipa”, Funkts. anal. i ego pril., 34:3 (2000), 37–48 | MR | Zbl

[8] Zorich V.A., Keselman V.M., “O konformnom tipe rimanova mnogoobraziya”, Funkts. anal. i ego pril., 30:2 (1996), 40–55 | MR | Zbl

[9] Zorich V.A., “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. and Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl

[10] Mostow G.D., Strong rigidity of locally symmetric spaces, Ann. Math. Stud., 78, Princeton Univ. Press, Princeton (NJ), 1973 | MR | Zbl

[11] Sub-Riemannian geometry, Progr. Math., 144, eds. A. Bellaiche, J.-J. Risler, Birkhäuser, Basel, 1996 | MR

[12] Korányi A., Reimann H.M., “Foundation for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111:1 (1995), 1–87 | DOI | MR | Zbl

[13] Korányi A., Reimann H.M., “Horizontal normal vectors and conformal capacity of spherical rings in the Heisenberg group”, Bull. sci. math. Sér. 2, 111:1 (1987), 3–21 | MR | Zbl

[14] Reimann H.M., “An estimate for pseudoconformal capacities on the sphere”, Ann. Acad. Sci. Fenn. AI: Math., 14:2 (1989), 315–324 | MR | Zbl

[15] Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un”, Ann. Math., 129 (1989), 1–60 | DOI | MR | Zbl

[16] Zorich V.A., “O kontaktnykh kvazikonformnykh pogruzheniyakh”, UMN, 60:2 (2005), 161–162 | MR | Zbl