Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_253_a6, author = {V. A. Zorich}, title = {Contact {Quasiconformal} {Immersions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {81--87}, publisher = {mathdoc}, volume = {253}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a6/} }
V. A. Zorich. Contact Quasiconformal Immersions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 81-87. http://geodesic.mathdoc.fr/item/TM_2006_253_a6/
[1] Lavrentev M.A., “Ob odnom differentsialnom priznake gomeomorfnykh otobrazhenii trekhmernykh oblastei”, DAN SSSR, 20 (1938), 241–242
[2] Zorich V.A., “Teorema M.A. Lavrenteva o kvazikonformnykh otobrazheniyakh prostranstva”, Mat. sb., 74 (1967), 417–433 | Zbl
[3] Zorich V.A., “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Collect. surv. 1960–1990, Lect. Notes Math., 1508, Springer, Berlin, 1992, 131–148 | MR
[4] Zorich V.A., “Kvazikonformnye otobrazheniya i asimptoticheskaya geometriya mnogoobrazii”, UMN, 57:3 (2002), 3–28 | MR | Zbl
[5] Gromov M., “Hyperbolic manifolds, groups and actions”, Riemann surfaces and related topics, Proc. Conf. (Stony Brook, 1978), Ann. Math. Stud., 97, Princeton Univ. Press, Princeton (NJ), 1981, 183–213 | MR
[6] Gromov M., Metric structures for Riemannian and non-Riemannian spaces, With appendices by M. Katz, P. Pansu, S. Semmes, Birkhäuser, Boston; Basel; Berlin, 1999 | MR | Zbl
[7] Zorich V.A., “Kvazikonformnye pogruzheniya rimanovykh mnogoobrazii i teorema pikarovskogo tipa”, Funkts. anal. i ego pril., 34:3 (2000), 37–48 | MR | Zbl
[8] Zorich V.A., Keselman V.M., “O konformnom tipe rimanova mnogoobraziya”, Funkts. anal. i ego pril., 30:2 (1996), 40–55 | MR | Zbl
[9] Zorich V.A., “Asymptotic geometry and conformal types of Carnot–Carathéodory spaces”, Geom. and Funct. Anal., 9:2 (1999), 393–411 | DOI | MR | Zbl
[10] Mostow G.D., Strong rigidity of locally symmetric spaces, Ann. Math. Stud., 78, Princeton Univ. Press, Princeton (NJ), 1973 | MR | Zbl
[11] Sub-Riemannian geometry, Progr. Math., 144, eds. A. Bellaiche, J.-J. Risler, Birkhäuser, Basel, 1996 | MR
[12] Korányi A., Reimann H.M., “Foundation for the theory of quasiconformal mappings on the Heisenberg group”, Adv. Math., 111:1 (1995), 1–87 | DOI | MR | Zbl
[13] Korányi A., Reimann H.M., “Horizontal normal vectors and conformal capacity of spherical rings in the Heisenberg group”, Bull. sci. math. Sér. 2, 111:1 (1987), 3–21 | MR | Zbl
[14] Reimann H.M., “An estimate for pseudoconformal capacities on the sphere”, Ann. Acad. Sci. Fenn. AI: Math., 14:2 (1989), 315–324 | MR | Zbl
[15] Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un”, Ann. Math., 129 (1989), 1–60 | DOI | MR | Zbl
[16] Zorich V.A., “O kontaktnykh kvazikonformnykh pogruzheniyakh”, UMN, 60:2 (2005), 161–162 | MR | Zbl