Remarks on the Local Version of the Inverse Scattering Method
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 46-60

Voir la notice de l'article provenant de la source Math-Net.Ru

It is very likely that all local holomorphic solutions of integrable $(1+1)$-dimensional parabolic-type evolution equations can be obtained from the zero solution by formal gauge transformations that belong (as formal power series) to appropriate Gevrey classes. We describe in detail the construction of solutions by means of convergent gauge transformations and prove an assertion converse to the above conjecture; namely, we suggest a simple necessary condition for the existence of a local holomorphic solution to the Cauchy problem for the evolution equations under consideration in terms of scattering data of initial conditions.
@article{TM_2006_253_a3,
     author = {A. V. Domrin},
     title = {Remarks on the {Local} {Version} of the {Inverse} {Scattering} {Method}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {46--60},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a3/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Remarks on the Local Version of the Inverse Scattering Method
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 46
EP  - 60
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a3/
LA  - ru
ID  - TM_2006_253_a3
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Remarks on the Local Version of the Inverse Scattering Method
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 46-60
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a3/
%G ru
%F TM_2006_253_a3
A. V. Domrin. Remarks on the Local Version of the Inverse Scattering Method. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 46-60. http://geodesic.mathdoc.fr/item/TM_2006_253_a3/