Remarks on the Local Version of the Inverse Scattering Method
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 46-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is very likely that all local holomorphic solutions of integrable $(1+1)$-dimensional parabolic-type evolution equations can be obtained from the zero solution by formal gauge transformations that belong (as formal power series) to appropriate Gevrey classes. We describe in detail the construction of solutions by means of convergent gauge transformations and prove an assertion converse to the above conjecture; namely, we suggest a simple necessary condition for the existence of a local holomorphic solution to the Cauchy problem for the evolution equations under consideration in terms of scattering data of initial conditions.
@article{TM_2006_253_a3,
     author = {A. V. Domrin},
     title = {Remarks on the {Local} {Version} of the {Inverse} {Scattering} {Method}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {46--60},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a3/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - Remarks on the Local Version of the Inverse Scattering Method
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 46
EP  - 60
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a3/
LA  - ru
ID  - TM_2006_253_a3
ER  - 
%0 Journal Article
%A A. V. Domrin
%T Remarks on the Local Version of the Inverse Scattering Method
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 46-60
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a3/
%G ru
%F TM_2006_253_a3
A. V. Domrin. Remarks on the Local Version of the Inverse Scattering Method. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 46-60. http://geodesic.mathdoc.fr/item/TM_2006_253_a3/

[1] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P., Teoriya solitonov. Metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR

[2] Faddeev L.D., Takhtadzhyan L.A., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[3] Dickey L.A., Soliton equations and Hamiltonian systems, World Sci., Singapore, 1991 | MR | Zbl

[4] Beals R., Deift P., Zhou X., “The inverse scattering transform on the line”, Important developments of soliton theory, eds. A.S. Fokas, V.E. Zakharov, Springer, Berlin etc., 1993, 7–32 | MR | Zbl

[5] Zakharov V.E., Shabat A.B., “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. anal. i ego pril., 13:3 (1979), 13–22 | MR | Zbl

[6] Krichever I.M., “Nelineinye uravneniya i ellipticheskie krivye”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 23, VINITI, M., 1983, 79–136 | MR

[7] Wilson G., “The $\tau$-functions of the $g$AKNS equations”, Integrable systems, The Verdier memorial conf., Progr. Math., 115, eds. O. Babelon et al., Birkhäuser, Basel, 1993, 131–145 | MR | Zbl

[8] Sattinger D.H., Szmigielski J.S., “Factorization and the dressing method for the Gel'fand–Dikii hierarchy”, Physica D, 64 (1993), 1–34 | DOI | MR | Zbl

[9] Terng C.-L., Uhlenbeck K., “Bäcklund transformations and loop group actions”, Commun. Pure and Appl. Math., 53 (2000), 1–75 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] Domrin A.V., “Zadacha Rimana i matrichnoznachnye potentsialy so skhodyascheisya funktsiei Beikera–Akhiezera”, TMF, 144:3 (2005), 453–471 | MR | Zbl

[11] Malgrange B., “Sur les deformations isomonodromiques. I: Singularites regulieres”, Mathematique et physique, Sem. Ecole Norm. Super. 1979–1982, Progr. Math., 37, eds. L. Boute de Monvel et al., Birkhäuser, Basel, 1983, 401–426 | MR

[12] Ward R.S., “The Painlevé property for the self-dual gauge-field equations”, Phys. Lett. A, 102 (1984), 279–282 | DOI | MR

[13] Schmidt M.U., Integrable systems and Riemann surfaces of infinite genus, Mem. AMS, 581, Amer. Math. Soc., Providence (RI), 1996 | MR | Zbl

[14] Gursa E., Kurs matematicheskogo analiza, t. 3, ch. 1, GTTI, M.; L., 1933

[15] Joshi N., Petersen J.A., Schubert L.M., “Nonexistence results for the Korteweg–de Vries and Kadomtsev–Petviashvili equations”, Stud. Appl. Math., 105 (2000), 361–374 | DOI | MR | Zbl

[16] Clancey K., Gokhberg I., Factorization of matrix functions and singular integral operators, Birkhäuser, Basel, 1981 | MR | Zbl

[17] Birkhoff G.D., “The generalized Riemann problem for linear differential equations and the allied problems for linear difference and $q$-difference equations”, Proc. Amer. Acad. Arts and Sci., 49 (1913), 521–568 ; Collected Math. Papers, 1, Dover Publ., New York, 1950, 259–306 | Zbl

[18] Gantmakher F.R., Teoriya matrits, Nauka, M., 1966 | MR

[19] Sibuya Y., Linear differential equations in the complex domain: problems of analytic continuation, Amer. Math. Soc., Providence (RI), 1990 | MR | Zbl

[20] Hsieh P.-F., Sibuya Y., Basic theory of ordinary differential equations, Springer, Berlin etc., 1999 | MR | Zbl

[21] Shabat A.B., “Obratnaya zadacha rasseyaniya”, Dif. uravneniya, 15 (1979), 1824–1834 | MR | Zbl

[22] Gelfond A.O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR