Residual Kernels with Singularities on Coordinate Planes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 277-295
Voir la notice de l'article provenant de la source Math-Net.Ru
A finite collection of planes $\{E_\nu \}$ in $\mathbb C^d$ is called an atomic family if the top de Rham cohomology group of its complement is generated by a single element. A closed differential form generating this group is called a residual kernel for the atomic family. We construct new residual kernels in the case when $E_\nu$ are coordinate planes such that the complement $\mathbb C^d\setminus \bigcup E_\nu$ admits a toric action with the orbit space being homeomorphic to a compact projective toric variety. They generalize the well-known Bochner–Martinelli and Sorani differential forms. The kernels obtained are used to establish a new formula of integral representations for functions holomorphic in Reinhardt polyhedra.
@article{TM_2006_253_a20,
author = {A. V. Shchuplev and A. K. Tsikh and A. Yger},
title = {Residual {Kernels} with {Singularities} on {Coordinate} {Planes}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {277--295},
publisher = {mathdoc},
volume = {253},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a20/}
}
TY - JOUR AU - A. V. Shchuplev AU - A. K. Tsikh AU - A. Yger TI - Residual Kernels with Singularities on Coordinate Planes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 277 EP - 295 VL - 253 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_253_a20/ LA - en ID - TM_2006_253_a20 ER -
A. V. Shchuplev; A. K. Tsikh; A. Yger. Residual Kernels with Singularities on Coordinate Planes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 277-295. http://geodesic.mathdoc.fr/item/TM_2006_253_a20/