The Envelope of Holomorphy of a~Model Third-Degree Surface and the Rigidity Phenomenon
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 30-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structures of the graded Lie algebra $\mathop{\mathrm{aut}}Q$ of infinitesimal automorphisms of a cubic (a model surface in $\mathbb C^N$) and the corresponding group $\mathop{\mathrm{Aut}}Q$ of its holomorphic automorphisms are studied. It is proved that for any nondegenerate cubic, the positively graded components of the algebra $\mathop{\mathrm{aut}}Q$ are trivial and, as a consequence, $\mathop{\mathrm{Aut}}Q$ has no subgroups consisting of nonlinear automorphisms of the cubic that preserve the origin (the so-called rigidity phenomenon). In the course of the proof, the envelope of holomorphy for a nondegenerate cubic is constructed and shown to be a cylinder with respect to the cubic variable whose base is a Siegel domain of the second kind.
@article{TM_2006_253_a2,
     author = {R. V. Gammel' and I. G. Kossovskii},
     title = {The {Envelope} of {Holomorphy} of {a~Model} {Third-Degree} {Surface} and the {Rigidity} {Phenomenon}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {30--45},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a2/}
}
TY  - JOUR
AU  - R. V. Gammel'
AU  - I. G. Kossovskii
TI  - The Envelope of Holomorphy of a~Model Third-Degree Surface and the Rigidity Phenomenon
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 30
EP  - 45
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a2/
LA  - ru
ID  - TM_2006_253_a2
ER  - 
%0 Journal Article
%A R. V. Gammel'
%A I. G. Kossovskii
%T The Envelope of Holomorphy of a~Model Third-Degree Surface and the Rigidity Phenomenon
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 30-45
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a2/
%G ru
%F TM_2006_253_a2
R. V. Gammel'; I. G. Kossovskii. The Envelope of Holomorphy of a~Model Third-Degree Surface and the Rigidity Phenomenon. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 30-45. http://geodesic.mathdoc.fr/item/TM_2006_253_a2/

[1] Beloshapka V.K., “Veschestvennye podmnogoobraziya kompleksnogo prostranstva: ikh polinomialnye modeli, avtomorfizmy i problemy klassifikatsii”, UMN, 57:1 (2002), 3–44 | MR | Zbl

[2] Beloshapka V.K., “Kubicheskaya model veschestvennogo mnogoobraziya”, Mat. zametki, 70:4 (2001), 503–519 | MR | Zbl

[3] Beloshapka V.K., “Universalnaya model veschestvennogo podmnogoobraziya”, Mat. zametki, 75:4 (2004), 507–522 | MR | Zbl

[4] Beloshapka V.K., Ezhov V.V., Shmalts G., “Golomorfnaya klassifikatsiya chetyrekhmernykh poverkhnostei v $\mathbb C^3$”, Izv. RAN. Ser. mat. (to appear)

[5] Palinchak N.F., “O kvadrikakh vysokoi korazmernosti”, Mat. zametki, 55:5 (1994), 110–115 | MR | Zbl

[6] Palinchak N.F., “O $c$-zhestkikh kvadrikakh”, Mat. zametki, 59:2 (1996), 224–229 | MR | Zbl

[7] Pyatetskii-Shapiro I.I., Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Fizmatgiz, M., 1961 | MR

[8] Tumanov A.E., “Prodolzhenie CR-funktsii v klin s mnogoobraziya konechnogo tipa”, Mat. sb., 181:7 (1990), 951–964 | MR | Zbl

[9] Ezov V., Schmalz G., “Infinitesimale Starrheit hermitescher Quadriken in allgemeiner Lage”, Math. Nachr., 204 (1999), 41–60 | MR | Zbl

[10] Tanaka N., “On differential systems, graded Lie algebras and pseudo-groups”, J. Math. Kyoto Univ., 10:1 (1970), 1–82 | MR | Zbl