Variations of Hartogs' Theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 232-240
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Hartogs' separate analyticity theorem is extended to functions holomorphic along holomorphic curves that form mutually transversal foliations of the domain of definition of these functions.
@article{TM_2006_253_a16,
     author = {E. M. Chirka},
     title = {Variations of {Hartogs'} {Theorem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {232--240},
     year = {2006},
     volume = {253},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a16/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Variations of Hartogs' Theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 232
EP  - 240
VL  - 253
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a16/
LA  - ru
ID  - TM_2006_253_a16
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Variations of Hartogs' Theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 232-240
%V 253
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a16/
%G ru
%F TM_2006_253_a16
E. M. Chirka. Variations of Hartogs' Theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 232-240. http://geodesic.mathdoc.fr/item/TM_2006_253_a16/

[1] Alfors L., Lektsii o kvazikonformnykh otobrazheniyakh, Mir, M., 1969 | MR

[2] Vekua I.N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[3] Sadullaev A.S., “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Mat. sb., 119 (1982), 96–118 | MR | Zbl

[4] Sadullaev A.S., Chirka E.M., “O prodolzhenii funktsii s polyarnymi osobennostyami”, Mat. sb., 132 (1987), 383–390 | MR | Zbl

[5] Chirka E.M., “Regulyarnost granits analiticheskikh mnozhestv”, Mat. sb., 117 (1982), 291–335 | MR | Zbl

[6] Chirka E.M., “Obobschennaya lemma Gartogsa i nelineinoe $\overline\partial$-uravnenie”, Kompleksnyi analiz v sovremennoi matematike, Fazis, M., 2001, 19–31 | MR | Zbl

[7] Chirka E.M., “Kvazigolomorfnye otobrazheniya”, Geometricheskii analiz i ego prilozheniya, Izd. VGU, Volgograd, 2005, 203–241

[8] Shabat B.V., Vvedenie v kompleksnyi analiz, ch. 2, Nauka, M., 1985 | MR

[9] Bers L., Royden H.L., “Holomorphic families of injections”, Acta math., 157 (1986), 259–286 | DOI | MR | Zbl

[10] Hartogs F., “Zur Theorie der analitischen Funktionen mehrerer unabhändiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben”, Math. Ann., 62 (1906), 1–88 | DOI | MR | Zbl

[11] Mañé R., Sad P., Sullivan D., “On the dynamics of rational maps”, Ann. Sci. Ècole Norm. Super, 16 (1983), 193–217 | MR | Zbl

[12] Rosay J.-P., “A counterexample to the Hartogs phenomenon (a question by E. Chirka)”, Michigan Math. J., 45 (1998), 529–535 | DOI | MR | Zbl

[13] Rothstein W., “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen”, Math. Ztschr., 53 (1950), 84–95 | DOI | MR | Zbl

[14] Rudin W., Function theory in the unit ball of $\mathbb C^n$, Springer, Berlin; New York, 1980 | MR | Zbl

[15] Slodkowski Z., “Polynomial hulls in $\mathbb C^2$ and quasicircles”, Ann. Scuola Norm. Super. Pisa. Ser. 4, 16 (1989), 367–391 | MR | Zbl

[16] Slodkowski Z., “Holomorphic motions and polynomial hulls”, Proc. Amer. Math. Soc., 111 (1991), 347–355 | DOI | MR | Zbl