Variations of Hartogs' Theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 232-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hartogs' separate analyticity theorem is extended to functions holomorphic along holomorphic curves that form mutually transversal foliations of the domain of definition of these functions.
@article{TM_2006_253_a16,
     author = {E. M. Chirka},
     title = {Variations of {Hartogs'} {Theorem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {232--240},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a16/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Variations of Hartogs' Theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 232
EP  - 240
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a16/
LA  - ru
ID  - TM_2006_253_a16
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Variations of Hartogs' Theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 232-240
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a16/
%G ru
%F TM_2006_253_a16
E. M. Chirka. Variations of Hartogs' Theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 232-240. http://geodesic.mathdoc.fr/item/TM_2006_253_a16/

[1] Alfors L., Lektsii o kvazikonformnykh otobrazheniyakh, Mir, M., 1969 | MR

[2] Vekua I.N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[3] Sadullaev A.S., “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Mat. sb., 119 (1982), 96–118 | MR | Zbl

[4] Sadullaev A.S., Chirka E.M., “O prodolzhenii funktsii s polyarnymi osobennostyami”, Mat. sb., 132 (1987), 383–390 | MR | Zbl

[5] Chirka E.M., “Regulyarnost granits analiticheskikh mnozhestv”, Mat. sb., 117 (1982), 291–335 | MR | Zbl

[6] Chirka E.M., “Obobschennaya lemma Gartogsa i nelineinoe $\overline\partial$-uravnenie”, Kompleksnyi analiz v sovremennoi matematike, Fazis, M., 2001, 19–31 | MR | Zbl

[7] Chirka E.M., “Kvazigolomorfnye otobrazheniya”, Geometricheskii analiz i ego prilozheniya, Izd. VGU, Volgograd, 2005, 203–241

[8] Shabat B.V., Vvedenie v kompleksnyi analiz, ch. 2, Nauka, M., 1985 | MR

[9] Bers L., Royden H.L., “Holomorphic families of injections”, Acta math., 157 (1986), 259–286 | DOI | MR | Zbl

[10] Hartogs F., “Zur Theorie der analitischen Funktionen mehrerer unabhändiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben”, Math. Ann., 62 (1906), 1–88 | DOI | MR | Zbl

[11] Mañé R., Sad P., Sullivan D., “On the dynamics of rational maps”, Ann. Sci. Ècole Norm. Super, 16 (1983), 193–217 | MR | Zbl

[12] Rosay J.-P., “A counterexample to the Hartogs phenomenon (a question by E. Chirka)”, Michigan Math. J., 45 (1998), 529–535 | DOI | MR | Zbl

[13] Rothstein W., “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Funktionen”, Math. Ztschr., 53 (1950), 84–95 | DOI | MR | Zbl

[14] Rudin W., Function theory in the unit ball of $\mathbb C^n$, Springer, Berlin; New York, 1980 | MR | Zbl

[15] Slodkowski Z., “Polynomial hulls in $\mathbb C^2$ and quasicircles”, Ann. Scuola Norm. Super. Pisa. Ser. 4, 16 (1989), 367–391 | MR | Zbl

[16] Slodkowski Z., “Holomorphic motions and polynomial hulls”, Proc. Amer. Math. Soc., 111 (1991), 347–355 | DOI | MR | Zbl