Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 158-174
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is of survey character. We present and discuss recent results concerning the extension of functions that admit holomorphic or plurisubharmonic extension in a fixed direction. These results are closely related to Hartogs' fundamental theorem, which states that if a function $f(z)$, $z = (z_1,z_2,\dots ,z_n)$, is holomorphic in a domain $D\subset \mathbb C^n$ in each variable $z_j$, then it is holomorphic in $D$ in the $n$-variable sense.
@article{TM_2006_253_a12,
     author = {A. S. Sadullaev and S. A. Imomkulov},
     title = {Extension of {Holomorphic} and {Pluriharmonic} {Functions} with {Thin} {Singularities} on {Parallel} {Sections}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {158--174},
     year = {2006},
     volume = {253},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a12/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - S. A. Imomkulov
TI  - Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 158
EP  - 174
VL  - 253
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a12/
LA  - ru
ID  - TM_2006_253_a12
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A S. A. Imomkulov
%T Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 158-174
%V 253
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a12/
%G ru
%F TM_2006_253_a12
A. S. Sadullaev; S. A. Imomkulov. Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 158-174. http://geodesic.mathdoc.fr/item/TM_2006_253_a12/

[1] Hartogs F., “Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben”, Math. Ann., 62 (1906), 1–88 | DOI | MR | Zbl

[2] Shabat B.V., Vvedenie v kompleksnyi analiz, ch. 2, Nauka, M., 1985 | MR

[3] Hukuhara M., L'extensions du theoreme d'Osgood et de Hartogs. Kansu-hoteisiki ogobi Oyo-Kaiseki, 48, 1930

[4] Siciak J., “Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of $\mathbb C^n$”, Ann. Pol. Math., 22:1 (1969), 145–171 | MR | Zbl

[5] Nguyen Thanh Van, Zeriahi A., “Une extension du théorème de Hartogs sur les fonctions séparément analytiques”, Analyse complexe multivariables: récents developpements, ed. A. Meril, Editoria Elettronica, Rende, 1991, 183–194 | MR

[6] Sadullaev A.S., “Plyurisubgarmonicheskie funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 8, VINITI, M., 1985, 65–111 | MR

[7] Sadullaev A.S., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl

[8] Sadullaev A.S., “Granichnaya teorema edinstvennosti v $\mathbb C^n$”, Mat. sb., 101:4 (1976), 568–583 | MR | Zbl

[9] Bedford E., Taylor B.A., “A new capacity for plurisubharmonic functions”, Acta math., 149 (1982), 1–40 | DOI | MR | Zbl

[10] Zakharyuta V.P., “Ekstremalnye plyurisubgarmonicheskie funktsii, gilbertovy shkaly i izomorfizmy prostranstv analiticheskikh funktsii mnogikh peremennykh. I, II”, Teoriya funktsii, funkts. anal. i ikh pril. Kharkov, 19 (1974), 133–157 ; 21, 65–83 | Zbl | Zbl

[11] Mityagin B.S., “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, UMN, 16:4 (1961), 63–132 | MR | Zbl

[12] Gonchar A.A., “On analytic continuation from the ‘edge of the wedge’ ”, Ann. Acad. sci. Fenn. Ser. AI: Math., 10 (1985), 221–225 | MR | Zbl

[13] Gonchar A.A., “K teoreme N.N. Bogolyubova ‘ostrie klina’ ”, Tr. MIAN, 228, 2000, 24–31 | MR | Zbl

[14] Imomkulov S.A., Khuzhamov Zh.U., “O separatno analiticheskikh funktsiyakh mnogikh peremennykh”, Uzb. mat. zhurn., 3 (2000), 3–7 | MR | Zbl

[15] Sadullaev A.S., Chirka E.M., “O prodolzhenii funktsii s polyarnymi osobennostyami”, Mat. sb., 132:3 (1987), 383–390 | MR | Zbl

[16] Rothstein W., “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Functionen”, Math. Ztschr., 53 (1950), 84–95 | DOI | MR | Zbl

[17] Kazaryan M.V., “O separatno meromorfnykh funktsiyakh mnogikh kompleksnykh peremennykh”, Mat. sb., 99:4 (1976), 538–547 | MR | Zbl

[18] Kazaryan M.V., “O golomorfnom prodolzhenii funktsii so spetsialnymi osobennostyami v $\mathbb C^n$”, DAN ArmSSR, 76 (1983), 13–17 | MR | Zbl

[19] Imomkulov S.A., “O golomorfnom prodolzhenii funktsii, zadannykh na granichnom puchke kompleksnykh pryamykh”, Izv. RAN. Ser. mat., 69:2 (2005), 125–144 | MR | Zbl

[20] Lelong P., “Fonctions plurisousharmoniques et fonctions analytyques de variable réelles”, Ann. Inst. Fourier, 11 (1961), 515–562 | MR | Zbl

[21] Zeriahi A., “Bases communes dans certains espaces de fonctions harmoniques et fonctions séparément harmoniques sur certains ensembles de $\mathbb C^n$”, Ann. Fac. Sci. Toulouse. Math. Ser. 5, 4 (1982), 75–102 | MR | Zbl

[22] Hécart J.-M., “Ouverts d'harmonicité pour les fonctions séparément harmoniques”, Potential Anal., 13:2 (2000), 115–126 | DOI | MR | Zbl

[23] Sadullaev A.S., Imomkulov S.A., “Prodolzhenie plyurigarmonicheskikh funktsii s diskretnymi osobennostyami na parallelnykh secheniyakh”, Vestn. KrasGU. Ser. fiz.-mat. nauk, 5:2 (2004), 3–6

[24] Sadullaev A.S., “O plyurigarmonicheskom prodolzhenii vdol fiksirovannogo napravleniya”, Mat. sb., 196:5 (2005), 145–156 | MR | Zbl

[25] Sadullaev A.S., Imomkulov S.A., “Prodolzhenie plyurigarmonicheskikh funktsii po granichnym secheniyam”, Vestn. Nats. un-ta Uzbekistana, 3 (2003), 40–43