Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 158-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is of survey character. We present and discuss recent results concerning the extension of functions that admit holomorphic or plurisubharmonic extension in a fixed direction. These results are closely related to Hartogs' fundamental theorem, which states that if a function $f(z)$, $z = (z_1,z_2,\dots ,z_n)$, is holomorphic in a domain $D\subset \mathbb C^n$ in each variable $z_j$, then it is holomorphic in $D$ in the $n$-variable sense.
@article{TM_2006_253_a12,
     author = {A. S. Sadullaev and S. A. Imomkulov},
     title = {Extension of {Holomorphic} and {Pluriharmonic} {Functions} with {Thin} {Singularities} on {Parallel} {Sections}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {158--174},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a12/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - S. A. Imomkulov
TI  - Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 158
EP  - 174
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a12/
LA  - ru
ID  - TM_2006_253_a12
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A S. A. Imomkulov
%T Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 158-174
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a12/
%G ru
%F TM_2006_253_a12
A. S. Sadullaev; S. A. Imomkulov. Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 158-174. http://geodesic.mathdoc.fr/item/TM_2006_253_a12/

[1] Hartogs F., “Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben”, Math. Ann., 62 (1906), 1–88 | DOI | MR | Zbl

[2] Shabat B.V., Vvedenie v kompleksnyi analiz, ch. 2, Nauka, M., 1985 | MR

[3] Hukuhara M., L'extensions du theoreme d'Osgood et de Hartogs. Kansu-hoteisiki ogobi Oyo-Kaiseki, 48, 1930

[4] Siciak J., “Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of $\mathbb C^n$”, Ann. Pol. Math., 22:1 (1969), 145–171 | MR | Zbl

[5] Nguyen Thanh Van, Zeriahi A., “Une extension du théorème de Hartogs sur les fonctions séparément analytiques”, Analyse complexe multivariables: récents developpements, ed. A. Meril, Editoria Elettronica, Rende, 1991, 183–194 | MR

[6] Sadullaev A.S., “Plyurisubgarmonicheskie funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 8, VINITI, M., 1985, 65–111 | MR

[7] Sadullaev A.S., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl

[8] Sadullaev A.S., “Granichnaya teorema edinstvennosti v $\mathbb C^n$”, Mat. sb., 101:4 (1976), 568–583 | MR | Zbl

[9] Bedford E., Taylor B.A., “A new capacity for plurisubharmonic functions”, Acta math., 149 (1982), 1–40 | DOI | MR | Zbl

[10] Zakharyuta V.P., “Ekstremalnye plyurisubgarmonicheskie funktsii, gilbertovy shkaly i izomorfizmy prostranstv analiticheskikh funktsii mnogikh peremennykh. I, II”, Teoriya funktsii, funkts. anal. i ikh pril. Kharkov, 19 (1974), 133–157 ; 21, 65–83 | Zbl | Zbl

[11] Mityagin B.S., “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, UMN, 16:4 (1961), 63–132 | MR | Zbl

[12] Gonchar A.A., “On analytic continuation from the ‘edge of the wedge’ ”, Ann. Acad. sci. Fenn. Ser. AI: Math., 10 (1985), 221–225 | MR | Zbl

[13] Gonchar A.A., “K teoreme N.N. Bogolyubova ‘ostrie klina’ ”, Tr. MIAN, 228, 2000, 24–31 | MR | Zbl

[14] Imomkulov S.A., Khuzhamov Zh.U., “O separatno analiticheskikh funktsiyakh mnogikh peremennykh”, Uzb. mat. zhurn., 3 (2000), 3–7 | MR | Zbl

[15] Sadullaev A.S., Chirka E.M., “O prodolzhenii funktsii s polyarnymi osobennostyami”, Mat. sb., 132:3 (1987), 383–390 | MR | Zbl

[16] Rothstein W., “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Functionen”, Math. Ztschr., 53 (1950), 84–95 | DOI | MR | Zbl

[17] Kazaryan M.V., “O separatno meromorfnykh funktsiyakh mnogikh kompleksnykh peremennykh”, Mat. sb., 99:4 (1976), 538–547 | MR | Zbl

[18] Kazaryan M.V., “O golomorfnom prodolzhenii funktsii so spetsialnymi osobennostyami v $\mathbb C^n$”, DAN ArmSSR, 76 (1983), 13–17 | MR | Zbl

[19] Imomkulov S.A., “O golomorfnom prodolzhenii funktsii, zadannykh na granichnom puchke kompleksnykh pryamykh”, Izv. RAN. Ser. mat., 69:2 (2005), 125–144 | MR | Zbl

[20] Lelong P., “Fonctions plurisousharmoniques et fonctions analytyques de variable réelles”, Ann. Inst. Fourier, 11 (1961), 515–562 | MR | Zbl

[21] Zeriahi A., “Bases communes dans certains espaces de fonctions harmoniques et fonctions séparément harmoniques sur certains ensembles de $\mathbb C^n$”, Ann. Fac. Sci. Toulouse. Math. Ser. 5, 4 (1982), 75–102 | MR | Zbl

[22] Hécart J.-M., “Ouverts d'harmonicité pour les fonctions séparément harmoniques”, Potential Anal., 13:2 (2000), 115–126 | DOI | MR | Zbl

[23] Sadullaev A.S., Imomkulov S.A., “Prodolzhenie plyurigarmonicheskikh funktsii s diskretnymi osobennostyami na parallelnykh secheniyakh”, Vestn. KrasGU. Ser. fiz.-mat. nauk, 5:2 (2004), 3–6

[24] Sadullaev A.S., “O plyurigarmonicheskom prodolzhenii vdol fiksirovannogo napravleniya”, Mat. sb., 196:5 (2005), 145–156 | MR | Zbl

[25] Sadullaev A.S., Imomkulov S.A., “Prodolzhenie plyurigarmonicheskikh funktsii po granichnym secheniyam”, Vestn. Nats. un-ta Uzbekistana, 3 (2003), 40–43