Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 158-174
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is of survey character. We present and discuss recent results concerning the extension of functions that admit holomorphic or plurisubharmonic extension in a fixed direction. These results are closely related to Hartogs' fundamental theorem, which states that if a function $f(z)$, $z = (z_1,z_2,\dots ,z_n)$, is holomorphic in a domain $D\subset \mathbb C^n$ in each variable $z_j$, then it is holomorphic in $D$ in the $n$-variable sense.
@article{TM_2006_253_a12,
author = {A. S. Sadullaev and S. A. Imomkulov},
title = {Extension of {Holomorphic} and {Pluriharmonic} {Functions} with {Thin} {Singularities} on {Parallel} {Sections}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {158--174},
publisher = {mathdoc},
volume = {253},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a12/}
}
TY - JOUR AU - A. S. Sadullaev AU - S. A. Imomkulov TI - Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 158 EP - 174 VL - 253 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_253_a12/ LA - ru ID - TM_2006_253_a12 ER -
%0 Journal Article %A A. S. Sadullaev %A S. A. Imomkulov %T Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 158-174 %V 253 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_253_a12/ %G ru %F TM_2006_253_a12
A. S. Sadullaev; S. A. Imomkulov. Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 158-174. http://geodesic.mathdoc.fr/item/TM_2006_253_a12/