Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 158-174

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is of survey character. We present and discuss recent results concerning the extension of functions that admit holomorphic or plurisubharmonic extension in a fixed direction. These results are closely related to Hartogs' fundamental theorem, which states that if a function $f(z)$, $z = (z_1,z_2,\dots ,z_n)$, is holomorphic in a domain $D\subset \mathbb C^n$ in each variable $z_j$, then it is holomorphic in $D$ in the $n$-variable sense.
@article{TM_2006_253_a12,
     author = {A. S. Sadullaev and S. A. Imomkulov},
     title = {Extension of {Holomorphic} and {Pluriharmonic} {Functions} with {Thin} {Singularities} on {Parallel} {Sections}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {158--174},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a12/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - S. A. Imomkulov
TI  - Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 158
EP  - 174
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a12/
LA  - ru
ID  - TM_2006_253_a12
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A S. A. Imomkulov
%T Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 158-174
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a12/
%G ru
%F TM_2006_253_a12
A. S. Sadullaev; S. A. Imomkulov. Extension of Holomorphic and Pluriharmonic Functions with Thin Singularities on Parallel Sections. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 158-174. http://geodesic.mathdoc.fr/item/TM_2006_253_a12/