Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 127-134
Voir la notice de l'article provenant de la source Math-Net.Ru
We find conditions for the quasianalyticity at a boundary point of the Carleman function classes in a planar Jordan domain.
@article{TM_2006_253_a10,
author = {V. V. Napalkov and K. V. Trounov and R. S. Yulmukhametov},
title = {Boundary {Uniqueness} {Theorems} in the {Carleman} {Classes} and {a~Dirichlet} {Problem}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {127--134},
publisher = {mathdoc},
volume = {253},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a10/}
}
TY - JOUR AU - V. V. Napalkov AU - K. V. Trounov AU - R. S. Yulmukhametov TI - Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 127 EP - 134 VL - 253 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_253_a10/ LA - ru ID - TM_2006_253_a10 ER -
%0 Journal Article %A V. V. Napalkov %A K. V. Trounov %A R. S. Yulmukhametov %T Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 127-134 %V 253 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_253_a10/ %G ru %F TM_2006_253_a10
V. V. Napalkov; K. V. Trounov; R. S. Yulmukhametov. Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 127-134. http://geodesic.mathdoc.fr/item/TM_2006_253_a10/