Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 127-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find conditions for the quasianalyticity at a boundary point of the Carleman function classes in a planar Jordan domain.
@article{TM_2006_253_a10,
     author = {V. V. Napalkov and K. V. Trounov and R. S. Yulmukhametov},
     title = {Boundary {Uniqueness} {Theorems} in the {Carleman} {Classes} and {a~Dirichlet} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a10/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - K. V. Trounov
AU  - R. S. Yulmukhametov
TI  - Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 127
EP  - 134
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a10/
LA  - ru
ID  - TM_2006_253_a10
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A K. V. Trounov
%A R. S. Yulmukhametov
%T Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 127-134
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a10/
%G ru
%F TM_2006_253_a10
V. V. Napalkov; K. V. Trounov; R. S. Yulmukhametov. Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 127-134. http://geodesic.mathdoc.fr/item/TM_2006_253_a10/

[1] Hadamard J., “Sur le module maximum d'une fonction analytique”, C. r. Sean. Soc. math. France, 40 (1912), 28

[2] Carleman T., Les fonctions quasi analytiques, Gauthier–Villars, Paris, 1926 | Zbl

[3] Ostrowski A., “Über quasianalytische Funktionen und Bestimmtheit asymptotischer Entwicklungen”, Acta math., 53 (1929), 181–266 | DOI | MR | Zbl

[4] Mandelbrojt S., Series adhereentes, regularisation des suites, applications, Gauthier–Villars, Paris, 1952 | MR | Zbl

[5] Korenblyum B.I., “Usloviya netrivialnosti nekotorykh klassov funktsii, analiticheskikh v ugle, i problemy kvazianalitichnosti”, DAN SSSR, 166:5 (1966), 1046–1049

[6] Korenblyum B.I., “Kvazianaliticheskie klassy v kruge”, DAN SSSR, 164:1 (1965), 36–39 | Zbl

[7] Yulmukhametov R.S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Mat. sb., 130:4 (1986), 500–519 | MR | Zbl

[8] Yulmukhametov R.S., Approksimatsiya subgarmonicheskikh funktsii i primeneniya, Dis. ... dokt. fiz.-mat. nauk, Mat. in-t im. V.A. Steklova, M., 1987

[9] Sibony N., “Approximation polinomiale ponderee dans un domaine d'holomorphie de $\mathbb C^n$”, Ann. Inst. Fourier. Grenoble, 26:2 (1976), 71–99 | MR

[10] Dynkin E.M., “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii, ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy, Tr. zimn. shk., 1976, TsEMI, M., 1976, 40–51 | MR

[11] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77

[12] R.-Salinas B., “Funktionen mit verschwindenden Momenten”, Rev. Acad. Ci. Madrid., 49 (1955), 331–368 | MR