Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2006_253_a10, author = {V. V. Napalkov and K. V. Trounov and R. S. Yulmukhametov}, title = {Boundary {Uniqueness} {Theorems} in the {Carleman} {Classes} and {a~Dirichlet} {Problem}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {127--134}, publisher = {mathdoc}, volume = {253}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a10/} }
TY - JOUR AU - V. V. Napalkov AU - K. V. Trounov AU - R. S. Yulmukhametov TI - Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2006 SP - 127 EP - 134 VL - 253 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2006_253_a10/ LA - ru ID - TM_2006_253_a10 ER -
%0 Journal Article %A V. V. Napalkov %A K. V. Trounov %A R. S. Yulmukhametov %T Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2006 %P 127-134 %V 253 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2006_253_a10/ %G ru %F TM_2006_253_a10
V. V. Napalkov; K. V. Trounov; R. S. Yulmukhametov. Boundary Uniqueness Theorems in the Carleman Classes and a~Dirichlet Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 127-134. http://geodesic.mathdoc.fr/item/TM_2006_253_a10/
[1] Hadamard J., “Sur le module maximum d'une fonction analytique”, C. r. Sean. Soc. math. France, 40 (1912), 28
[2] Carleman T., Les fonctions quasi analytiques, Gauthier–Villars, Paris, 1926 | Zbl
[3] Ostrowski A., “Über quasianalytische Funktionen und Bestimmtheit asymptotischer Entwicklungen”, Acta math., 53 (1929), 181–266 | DOI | MR | Zbl
[4] Mandelbrojt S., Series adhereentes, regularisation des suites, applications, Gauthier–Villars, Paris, 1952 | MR | Zbl
[5] Korenblyum B.I., “Usloviya netrivialnosti nekotorykh klassov funktsii, analiticheskikh v ugle, i problemy kvazianalitichnosti”, DAN SSSR, 166:5 (1966), 1046–1049
[6] Korenblyum B.I., “Kvazianaliticheskie klassy v kruge”, DAN SSSR, 164:1 (1965), 36–39 | Zbl
[7] Yulmukhametov R.S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Mat. sb., 130:4 (1986), 500–519 | MR | Zbl
[8] Yulmukhametov R.S., Approksimatsiya subgarmonicheskikh funktsii i primeneniya, Dis. ... dokt. fiz.-mat. nauk, Mat. in-t im. V.A. Steklova, M., 1987
[9] Sibony N., “Approximation polinomiale ponderee dans un domaine d'holomorphie de $\mathbb C^n$”, Ann. Inst. Fourier. Grenoble, 26:2 (1976), 71–99 | MR
[10] Dynkin E.M., “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii, ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy, Tr. zimn. shk., 1976, TsEMI, M., 1976, 40–51 | MR
[11] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, 1:1 (1957), 60–77
[12] R.-Salinas B., “Funktionen mit verschwindenden Momenten”, Rev. Acad. Ci. Madrid., 49 (1955), 331–368 | MR