Vitushkin's Germ Theorem for Engel-Type CR Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 7-13

Voir la notice de l'article provenant de la source Math-Net.Ru

We study real analytic CR manifolds of CR dimension $1$ and codimension $2$ in the three-dimensional complex space. We prove that the germ of a holomorphic mapping between “nonspherical” manifolds can be extended along any path (this is an analog of Vitushkin's germ theorem). For a cubic model surface (“sphere”), we prove an analog of the Poincaré theorem on the mappings of spheres into $\mathbb~C^2$. We construct an example of a compact “spherical” submanifold in a compact complex $3$-space such that the germ of a mapping of the “sphere” into this submanifold cannot be extended to a certain point of the “sphere.”
@article{TM_2006_253_a0,
     author = {V. K. Beloshapka and V. V. Ezhov and G. Schmalz},
     title = {Vitushkin's {Germ} {Theorem} for {Engel-Type} {CR} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--13},
     publisher = {mathdoc},
     volume = {253},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_253_a0/}
}
TY  - JOUR
AU  - V. K. Beloshapka
AU  - V. V. Ezhov
AU  - G. Schmalz
TI  - Vitushkin's Germ Theorem for Engel-Type CR Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 7
EP  - 13
VL  - 253
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_253_a0/
LA  - ru
ID  - TM_2006_253_a0
ER  - 
%0 Journal Article
%A V. K. Beloshapka
%A V. V. Ezhov
%A G. Schmalz
%T Vitushkin's Germ Theorem for Engel-Type CR Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 7-13
%V 253
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_253_a0/
%G ru
%F TM_2006_253_a0
V. K. Beloshapka; V. V. Ezhov; G. Schmalz. Vitushkin's Germ Theorem for Engel-Type CR Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Complex analysis and applications, Tome 253 (2006), pp. 7-13. http://geodesic.mathdoc.fr/item/TM_2006_253_a0/