Morava $K$-Theory Ring for a~Quasi-dihedral Group in Chern Classes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 31-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Morava $K$-theory ring for a quasi-dihedral group is calculated in terms of Chern characteristic classes and the Honda formal group law.
@article{TM_2006_252_a3,
     author = {M. Bakuradze},
     title = {Morava $K${-Theory} {Ring} for {a~Quasi-dihedral} {Group} in {Chern} {Classes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {31--36},
     publisher = {mathdoc},
     volume = {252},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2006_252_a3/}
}
TY  - JOUR
AU  - M. Bakuradze
TI  - Morava $K$-Theory Ring for a~Quasi-dihedral Group in Chern Classes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2006
SP  - 31
EP  - 36
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2006_252_a3/
LA  - en
ID  - TM_2006_252_a3
ER  - 
%0 Journal Article
%A M. Bakuradze
%T Morava $K$-Theory Ring for a~Quasi-dihedral Group in Chern Classes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2006
%P 31-36
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2006_252_a3/
%G en
%F TM_2006_252_a3
M. Bakuradze. Morava $K$-Theory Ring for a~Quasi-dihedral Group in Chern Classes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology, discrete geometry, and set theory, Tome 252 (2006), pp. 31-36. http://geodesic.mathdoc.fr/item/TM_2006_252_a3/

[1] Adams J.F., Infinite loop spaces, Ann. Math. Stud., 90, Princeton Univ. Press, Princeton, 1978 | MR | Zbl

[2] Atiyah M.F., “Characters and cohomology of finite groups”, Publ. Math. IHES, 9 (1961), 23–64 | MR

[3] Bakuradze M., Vershinin V., “Morava $K$-theory rings for the dihedral, semidihedral and generalized quaternion groups in Chern classes”, Proc. Amer. Math. Soc., 134:12 (2006), 3707–3714 | DOI | MR | Zbl

[4] Bakuradze M., Priddy S., “Transfer and complex oriented cohomology rings”, Alg. and Geom. Topology, 3 (2003), 473–509 | DOI | MR | Zbl

[5] Bakuradze M., Priddy S., “Transferred Chern classes in Morava $K$-theory”, Proc. Amer. Math. Soc., 132 (2004), 1855–1860 | DOI | MR | Zbl

[6] Brunetti M., “Morava $K$-theories of $p$-groups with cyclic maximal subgroups and other related groups”, K-Theory, 24 (2001), 385–395 | DOI | MR | Zbl

[7] Dold A., “The fixed point transfer of fiber-preserving maps”, Math. Ztschr., 148:215–244 (1976) | MR | Zbl

[8] Kahn D.S., Priddy S.B., “Applications of the transfer to stable homotopy theory”, Bull. Amer. Math. Soc., 78 (1972), 981–987 | DOI | MR | Zbl

[9] Hopkins M.J., Kuhn N.J., Ravenel D.C., “Generalized group characters and complex oriented cohomology theories”, J. Amer. Math. Soc., 13:3 (2000), 553–594 | DOI | MR

[10] Ravenel D.C., Complex cobordism and stable homotopy groups of spheres, Pure and Appl. Math., 121, Acad. Press, Orlando (FL), 1986 | MR | Zbl

[11] Schuster B., “On the Morava K-theory of some finite 2-groups”, Math. Proc. Cambridge Philos. Soc., 121 (1997), 7–13 | DOI | MR | Zbl

[12] Tezuka M., Yagita N., “Cohomology of finite groups and Brown–Peterson cohomology. II”, Homotopy theory and related topics, Proc. Intern. Conf. (Kinosaki (Japan), 1988), Lect. Notes Math., 1418, Springer, Berlin, 1990, 57–69 | MR

[13] Yagita N., “Note on $BP$-theory for extensions of cyclic groups by elementary abelian $p$-groups”, Kodai Math. J., 20:2 (1997), 79–84 | DOI | MR | Zbl