Stability Theory of the Euler Loop on Inextensible Elastic Rods
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 154-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of solitary waves in a thin inextensible elastic rod of infinite length is studied. In the absence of torsion, the profile of the elastica of such a rod that corresponds to a solitary wave has the form of a plane loop. The range of speeds of the loop depends on the tension in the rod. The orbital stability of solitary waves with respect to the plane perturbations of the form of the loop is established. The stability result follows from the fact that the orbit of a solitary wave provides a local minimum of a certain invariant functional. The minimum is attained on a nonlinear invariant submanifold of the basic space of solutions. For a certain range of speeds of a solitary wave, its linear instability with respect to nonplanar perturbations of the loop is proved. The instability result is obtained by using the properties of the Evans function, which is analytic in the right complex half-plane of the spectral parameter. This function has zeroes in the right half-plane if and only if there exists an unstable global mode. The instability follows directly from the comparison of the asymptotic behavior of the Evans function in the neighborhood of zero and at infinity. Expressions for the leading coefficients in the Taylor expansion of the Evans function in the neighborhood of the origin are obtained with the use of Mathematica 4.0 package.
@article{TM_2005_251_a6,
     author = {A. T. Il'ichev},
     title = {Stability {Theory} of the {Euler} {Loop} on {Inextensible} {Elastic} {Rods}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {154--172},
     publisher = {mathdoc},
     volume = {251},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_251_a6/}
}
TY  - JOUR
AU  - A. T. Il'ichev
TI  - Stability Theory of the Euler Loop on Inextensible Elastic Rods
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 154
EP  - 172
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_251_a6/
LA  - ru
ID  - TM_2005_251_a6
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%T Stability Theory of the Euler Loop on Inextensible Elastic Rods
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 154-172
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_251_a6/
%G ru
%F TM_2005_251_a6
A. T. Il'ichev. Stability Theory of the Euler Loop on Inextensible Elastic Rods. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 154-172. http://geodesic.mathdoc.fr/item/TM_2005_251_a6/

[1] Afendikov A. L., Bridges T. J., “Instability of the Hocking–Stewartson pulse and its implications for three-dimensional Poiseuille flow”, Proc. Roy. Soc. London A., 457 (2001), 257–272 | DOI | MR | Zbl

[2] Albert J. P., Bona J. L., Henry D. B., “Sufficient conditions for stability of solitary-wave solutions of model equations for long waves”, Physica D., 24 (1987), 343–366 | DOI | MR | Zbl

[3] Alexander J. C., Sachs R., “Linear instability of solitary waves of a Boussinesq-type equation: A computer assisted computation”, Nonlin. World, 2 (1995), 471–507 | MR | Zbl

[4] Alexander J. C., Gardner R., Jones C., “A topological invariant arising in the stability analysis of travelling waves”, J. Reine und Angew. Math., 410 (1990), 167–212 | MR | Zbl

[5] Alexander J. C., Grillakis M. G., Jones C. K. R. T., Sandstede B., “Stability of pulses on optical fibers with phase-sensitive amplifiers”, Ztschr. Angew. Math. und Phys., 48 (1997), 175–192 | DOI | MR | Zbl

[6] Beliaev A., Il'ichev A., “Conditional stability of solitary waves propagating in elastic rods”, Physica D., 90 (1996), 107–118 | DOI | MR | Zbl

[7] Benjamin T. B., “The stability of solitary waves”, Proc. Roy. Soc. London A., 328 (1972), 153–183 | DOI | MR

[8] Bennet D. P., Brown R. W., Stansfield S. E., Stroughair J. D., Bona J. L., “The stability of internal solitary waves”, Math. Proc. Cambridge Philos. Soc., 94 (1983), 351–379 | DOI | MR | Zbl

[9] Bridges T. J., Derks G., “The sympletic Evans matrix, and the instability of solitary waves and fronts with symmetry”, Arch. Ration. Mech. and Anal., 156 (2001), 1–87 | DOI | MR | Zbl

[10] Bridges T. J., Derks G., Gottwald G., “Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework”, Physica D., 172 (2002), 190–216 | DOI | MR | Zbl

[11] Bona J. L., “On the stability theory of solitary waves”, Proc. Roy. Soc. London A., 344 (1975), 363–374 | DOI | MR | Zbl

[12] Bona J. L., Sachs R. L., “Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation”, Commun. Math. Phys., 118 (1988), 15–29 | DOI | MR | Zbl

[13] Bona J. L., Souganidis P. E., Strauss W. A., “Stability and instability of solitary waves of Korteweg–de Vries type”, Proc. Roy. Soc. London A., 411 (1987), 395–412 | DOI | MR | Zbl

[14] Dichmann D. J., Maddocks J. H., Pego R. L., “Hamiltonian dynamics of an elastica and the stability of solitary waves”, Arch. Ration. Mech. and Anal., 135 (1996), 357–396 | DOI | MR | Zbl

[15] Evans J. W., “Nerve axon equations. III: Stability of the nerve impulse”, Indiana Univ. Math. J., 22 (1972), 577–594 | DOI | MR

[16] Gardner R. A., Zumburin K., “The gap lemma and geometric criteria for instability of viscous shock profiles”, Commun. Pure and Appl. Math., 41 (1998), 797–855 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[17] Grillakis M., Shatah J., Strauss W., “Stability theory of solitary waves in the presence of symmetry, I”, J. Funct. Anal., 74 (1987), 160–197 | DOI | MR | Zbl

[18] Ilichev A. T., “Ustoichivost solitonov v nelineinykh kompozitnykh sredakh”, ZhETF, 118 (2000), 720–729

[19] Ilichev A. T., “Neustoichivost solitonov v nerastyazhimykh sterzhnyakh”, DAN, 397:3 (2004), 304–307 | MR

[20] Il'ichev A., “Stability of solitary waves in a nonlinear composite media”, Physica D., 150 (2001), 264–277 | DOI | MR

[21] Il'ichev A., “Instability of solitary waves on Euler's elastica”, Ztschr. Angew. Math. und Phys. (to appear)

[22] Il'ichev A. T., Semenov A. Yu., “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theor. Comput. Fluid Dyn., 3 (1992), 307–326 | DOI

[23] Jones C. K. R. T., “Stability of the travelling wave solution of the FitzHugh–Nagumo system”, Trans. Amer. Math. Soc., 286 (1984), 431–469 | DOI | MR | Zbl

[24] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[25] Lyav A., Matematicheskaya teoriya uprugosti, ONTI, M., 1935

[26] Kapitula T., “Stability criterion for bright solitary waves of the perturbed cubic–quintic Schrödinger equation”, Physica D., 116 (1998), 95–120 | DOI | MR | Zbl

[27] Kapitula T., Sandstede B., “Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations”, Physica D., 124 (1998), 58–103 | DOI | MR | Zbl

[28] Pego R. L., Weinstein M. I., “Eigenvalues, and instabilities of solitary waves”, Philos. Trans. Roy. Soc. London A., 340 (1992), 47–94 | DOI | MR | Zbl

[29] Pego R. L., Smereka P., Weinstein M. I., “Oscillatory instability of travelling waves for KdV–Burgers equation”, Physica D., 67 (1993), 45–65 | DOI | MR | Zbl

[30] Shatah J., Strauss W., “Instability of nonlinear bound states”, Commun. Math. Phys., 100 (1985), 173–190 | DOI | MR | Zbl

[31] Swinton J., Eglin J., “Stability of travelling pulse to a laser equation”, Phys. Lett. A., 145 (1990), 428–433 | DOI | MR