Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2005_251_a6, author = {A. T. Il'ichev}, title = {Stability {Theory} of the {Euler} {Loop} on {Inextensible} {Elastic} {Rods}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {154--172}, publisher = {mathdoc}, volume = {251}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2005_251_a6/} }
A. T. Il'ichev. Stability Theory of the Euler Loop on Inextensible Elastic Rods. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 154-172. http://geodesic.mathdoc.fr/item/TM_2005_251_a6/
[1] Afendikov A. L., Bridges T. J., “Instability of the Hocking–Stewartson pulse and its implications for three-dimensional Poiseuille flow”, Proc. Roy. Soc. London A., 457 (2001), 257–272 | DOI | MR | Zbl
[2] Albert J. P., Bona J. L., Henry D. B., “Sufficient conditions for stability of solitary-wave solutions of model equations for long waves”, Physica D., 24 (1987), 343–366 | DOI | MR | Zbl
[3] Alexander J. C., Sachs R., “Linear instability of solitary waves of a Boussinesq-type equation: A computer assisted computation”, Nonlin. World, 2 (1995), 471–507 | MR | Zbl
[4] Alexander J. C., Gardner R., Jones C., “A topological invariant arising in the stability analysis of travelling waves”, J. Reine und Angew. Math., 410 (1990), 167–212 | MR | Zbl
[5] Alexander J. C., Grillakis M. G., Jones C. K. R. T., Sandstede B., “Stability of pulses on optical fibers with phase-sensitive amplifiers”, Ztschr. Angew. Math. und Phys., 48 (1997), 175–192 | DOI | MR | Zbl
[6] Beliaev A., Il'ichev A., “Conditional stability of solitary waves propagating in elastic rods”, Physica D., 90 (1996), 107–118 | DOI | MR | Zbl
[7] Benjamin T. B., “The stability of solitary waves”, Proc. Roy. Soc. London A., 328 (1972), 153–183 | DOI | MR
[8] Bennet D. P., Brown R. W., Stansfield S. E., Stroughair J. D., Bona J. L., “The stability of internal solitary waves”, Math. Proc. Cambridge Philos. Soc., 94 (1983), 351–379 | DOI | MR | Zbl
[9] Bridges T. J., Derks G., “The sympletic Evans matrix, and the instability of solitary waves and fronts with symmetry”, Arch. Ration. Mech. and Anal., 156 (2001), 1–87 | DOI | MR | Zbl
[10] Bridges T. J., Derks G., Gottwald G., “Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework”, Physica D., 172 (2002), 190–216 | DOI | MR | Zbl
[11] Bona J. L., “On the stability theory of solitary waves”, Proc. Roy. Soc. London A., 344 (1975), 363–374 | DOI | MR | Zbl
[12] Bona J. L., Sachs R. L., “Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation”, Commun. Math. Phys., 118 (1988), 15–29 | DOI | MR | Zbl
[13] Bona J. L., Souganidis P. E., Strauss W. A., “Stability and instability of solitary waves of Korteweg–de Vries type”, Proc. Roy. Soc. London A., 411 (1987), 395–412 | DOI | MR | Zbl
[14] Dichmann D. J., Maddocks J. H., Pego R. L., “Hamiltonian dynamics of an elastica and the stability of solitary waves”, Arch. Ration. Mech. and Anal., 135 (1996), 357–396 | DOI | MR | Zbl
[15] Evans J. W., “Nerve axon equations. III: Stability of the nerve impulse”, Indiana Univ. Math. J., 22 (1972), 577–594 | DOI | MR
[16] Gardner R. A., Zumburin K., “The gap lemma and geometric criteria for instability of viscous shock profiles”, Commun. Pure and Appl. Math., 41 (1998), 797–855 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[17] Grillakis M., Shatah J., Strauss W., “Stability theory of solitary waves in the presence of symmetry, I”, J. Funct. Anal., 74 (1987), 160–197 | DOI | MR | Zbl
[18] Ilichev A. T., “Ustoichivost solitonov v nelineinykh kompozitnykh sredakh”, ZhETF, 118 (2000), 720–729
[19] Ilichev A. T., “Neustoichivost solitonov v nerastyazhimykh sterzhnyakh”, DAN, 397:3 (2004), 304–307 | MR
[20] Il'ichev A., “Stability of solitary waves in a nonlinear composite media”, Physica D., 150 (2001), 264–277 | DOI | MR
[21] Il'ichev A., “Instability of solitary waves on Euler's elastica”, Ztschr. Angew. Math. und Phys. (to appear)
[22] Il'ichev A. T., Semenov A. Yu., “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theor. Comput. Fluid Dyn., 3 (1992), 307–326 | DOI
[23] Jones C. K. R. T., “Stability of the travelling wave solution of the FitzHugh–Nagumo system”, Trans. Amer. Math. Soc., 286 (1984), 431–469 | DOI | MR | Zbl
[24] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958
[25] Lyav A., Matematicheskaya teoriya uprugosti, ONTI, M., 1935
[26] Kapitula T., “Stability criterion for bright solitary waves of the perturbed cubic–quintic Schrödinger equation”, Physica D., 116 (1998), 95–120 | DOI | MR | Zbl
[27] Kapitula T., Sandstede B., “Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations”, Physica D., 124 (1998), 58–103 | DOI | MR | Zbl
[28] Pego R. L., Weinstein M. I., “Eigenvalues, and instabilities of solitary waves”, Philos. Trans. Roy. Soc. London A., 340 (1992), 47–94 | DOI | MR | Zbl
[29] Pego R. L., Smereka P., Weinstein M. I., “Oscillatory instability of travelling waves for KdV–Burgers equation”, Physica D., 67 (1993), 45–65 | DOI | MR | Zbl
[30] Shatah J., Strauss W., “Instability of nonlinear bound states”, Commun. Math. Phys., 100 (1985), 173–190 | DOI | MR | Zbl
[31] Swinton J., Eglin J., “Stability of travelling pulse to a laser equation”, Phys. Lett. A., 145 (1990), 428–433 | DOI | MR