Pfaffian and the Kac--Ward Formula in the Two-Dimensional Ising Model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 139-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

By using the Pfaffian method, we get a simple proof of the Kac–Ward formula for the two-dimensional Ising model with free boundary conditions.
@article{TM_2005_251_a5,
     author = {Yu. M. Zinoviev},
     title = {Pfaffian and the {Kac--Ward} {Formula} in the {Two-Dimensional} {Ising} {Model}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {139--153},
     publisher = {mathdoc},
     volume = {251},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_251_a5/}
}
TY  - JOUR
AU  - Yu. M. Zinoviev
TI  - Pfaffian and the Kac--Ward Formula in the Two-Dimensional Ising Model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 139
EP  - 153
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_251_a5/
LA  - ru
ID  - TM_2005_251_a5
ER  - 
%0 Journal Article
%A Yu. M. Zinoviev
%T Pfaffian and the Kac--Ward Formula in the Two-Dimensional Ising Model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 139-153
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_251_a5/
%G ru
%F TM_2005_251_a5
Yu. M. Zinoviev. Pfaffian and the Kac--Ward Formula in the Two-Dimensional Ising Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 139-153. http://geodesic.mathdoc.fr/item/TM_2005_251_a5/

[1] Onsager L., “Crystal statistics. I: A two-dimensional model with order–disorder transition”, Phys. Rev., 65:3/4 (1944), 117–149 | DOI | MR | Zbl

[2] Kaufman B., “Crystal statistics. II: Partition function evaluated by spinor analysis”, Phys. Rev., 74:6 (1949), 1232–1243 | DOI

[3] Kaufman B., Onsager L., “Crystal statistics. III: Short-range order in a binary Ising lattice”, Phys. Rev., 74:6 (1949), 1244–1252 | DOI

[4] Kac M., Ward J. C., “A combinatorial solution of the two-dimensional Ising model”, Phys. Rev., 88:6 (1952), 1332–1337 | DOI | Zbl

[5] Sherman S., “Combinatorial aspects of the Ising model for ferromagnetism. I: A conjecture of Feynman on paths and graphs”, J. Math. Phys., 1:3 (1960), 202–217 ; ibid, 4:9 (1963), 1213–1214 | DOI | MR | MR | Zbl

[6] Dolbilin N. P., Zinovev Yu. M., Mischenko A. S., Shtanko M. A., Shtogrin M. I., “Dvumernaya model Izinga i determinant Katsa–Uorda”, Izv. RAN. Ser. mat., 63:4 (1999), 79–100 | MR | Zbl

[7] Zinovev Yu. M., “Model Izinga i $L$-funktsiya”, TMF, 126:1 (2001), 84–101 | MR

[8] Hurst C. A., Green H. S., “New solution of the Ising problem for a rectangular lattice”, J. Chem. Phys., 33:4 (1960), 1059–1062 | DOI | MR

[9] Kasteleyn P. W., “Dimer statistics and phase transition”, J. Math. Phys., 4:2 (1963), 287–293 | DOI | MR

[10] Fisher M. E., “On the dimer solution of planar Ising model”, J. Math. Phys., 7:10 (1966), 1776–1781 | DOI

[11] McCoy B. M., Wu Tai Tsun, The two-dimensional Ising model, Harvard Univ. Press, Cambridge, MA, 1973

[12] Dolbilin N. P., Zinovev Yu. M., Mischenko A. S., Shtanko M. A., Shtogrin M. I., “Gomologicheskie svoistva dimernykh pokrytii reshetok na poverkhnostyakh”, Funkts. analiz i ego pril., 30:3 (1996), 19–33 | MR | Zbl

[13] Zinovev Yu. M., “Formula Onzagera”, Tr. MIAN, 228, 2000, 298–319 | MR

[14] Zinovev Yu. M., “Spontannaya namagnichennost v dvumernoi modeli Izinga”, TMF, 136:3 (2003), 444–462 | MR

[15] Van der Waerden B. L., “Lange Reichweite der regelmassigen Atomanordung in Mischcristallen”, Ztschr. Phys., 118:2 (1941), 473–488 | Zbl

[16] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR