Addition Laws on Jacobian Varieties of Plane Algebraic Curves
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 54-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the theory of sigma functions defined on Jacobi varieties of plane algebraic curves. We develop this theory aiming at applications in the theory of nonlinear differential equations and mathematical physics. We propose a method for studying addition laws of Abelian functions which is based on polylinear functional equations that hold for sigma functions. The solutions to polylinear functional equations are constructed with the help of the following key tools: (1) a degenerate Baker–Akhiezer function with a unique singularity in the neighborhood of which this function behaves like $\xi ^{-g}\exp \{p(\xi ^{-1})\}(1+O(\xi ))$, wher $g$ is the genus of the curve and $p$ is a polynomial of degree at most $2g-1$; (2) entire rational functions $R_{kg}$ that have $kg$ zeros on the curve and define the operations of inversion, when $k=2$, and addition, when $k=3$, on the $g$th symmetric power of the curve. We give explicit addition formulas for hyperelliptic Abelian functions and present a construction of multidimensional heat equations in a nonholonomic frame that hold for sigma functions. We also establish a relation between the recursions that define the power series expansion of sigma functions and the Cauchy problems for systems of linear difference equations. The exposition includes several open problems and a large number of examples.
@article{TM_2005_251_a3,
     author = {V. M. Buchstaber and D. V. Leikin},
     title = {Addition {Laws} on {Jacobian} {Varieties} of {Plane} {Algebraic} {Curves}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {54--126},
     publisher = {mathdoc},
     volume = {251},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_251_a3/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - D. V. Leikin
TI  - Addition Laws on Jacobian Varieties of Plane Algebraic Curves
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 54
EP  - 126
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_251_a3/
LA  - ru
ID  - TM_2005_251_a3
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A D. V. Leikin
%T Addition Laws on Jacobian Varieties of Plane Algebraic Curves
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 54-126
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_251_a3/
%G ru
%F TM_2005_251_a3
V. M. Buchstaber; D. V. Leikin. Addition Laws on Jacobian Varieties of Plane Algebraic Curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 54-126. http://geodesic.mathdoc.fr/item/TM_2005_251_a3/

[1] Abel N. H., ØE uvres complètes, 1, J. Gabay, Sceaux, 1992

[2] Adler V. E., Veselov A. P., “Cauchy problem for integrable discrete equations on quad-graphs”, Acta Appl. Math., 84:2 (2004), 237–262 | MR | Zbl

[3] Arbarello E., Cornalba M., Griffiths P. A., Harris J., Geometry of algebraic curves, Springer, New York, 1985 | MR | Zbl

[4] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp. | MR

[5] Aczel J., Dhombres J., Functional equations in several variables, Cambridge Univ. Press, Cambridge, 1989 ; Atsel Ya., Dombr Zh., Funktsionalnye uravneniya s neskolkimi peremennymi, Fizmatlit, M., 2003 | MR | Zbl

[6] Baker H. F., Abelian functions, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[7] Baker H. F., An introduction to the theory of multiply-periodic functions, Cambridge Univ. Press, Cambridge, 1907 | Zbl

[8] Baxter R., Exactly solved models in statistical mechanics, Acad. Press, London, 1982 ; Bakster R., Tochno reshaemye zadachi v statisticheskoi mekhanike, Mir, M., 1985, 488 pp. | MR | Zbl

[9] Bolza O., “The partial differential equations for the hyperelliptic $\theta$- and $\sigma$-functions”, Amer. J. Math., 21 (1899), 107–125 | DOI | MR | Zbl

[10] Bolza O., “Remark concerning expansions of the hyperelliptic $\sigma$-functions”, Amer. J. Math., 22 (1900), 101–112 | DOI | MR | Zbl

[11] Bukhshtaber V. M., Krichever I. M., “Vektornye teoremy slozheniya i funktsii Beikera–Akhiezera”, TMF, 94:2 (1993), 200–212 | MR | Zbl

[12] Buchstaber V. M., Krichever I. M., “Multidimesional vector addition theorems and the Riemann theta functions”, Intern. Math. Res. Not., 1996, no. 10, 505–513 | DOI | MR | Zbl

[13] Bukhshtaber V. M., Krichever I. M., “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1 (2006), 25–84 | MR | Zbl

[14] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, geometry and topology: On the crossroad, AMS Transl. Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, Amer. Math. Soc., Providence, RI, 1997, 1–34 | MR

[15] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. and Math. Phys., 10:2 (1977), 3–120

[16] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | MR | Zbl

[17] Bukhshtaber V. M., Leikin D. V., “Algebry Li, assotsiirovannye s $\sigma$-funktsiyami, i versalnye deformatsii”, UMN, 57:3 (2002), 145–146 | MR | Zbl

[18] Bukhshtaber V. M., Leikin D. V., “Graduirovannye algebry Li, zadayuschie giperellipticheskie $\sigma$-funktsii”, DAN, 385:5 (2002), 583–586 | MR | Zbl

[19] Bukhshtaber V. M., Leikin D. V., “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | MR | Zbl

[20] Bukhshtaber V. M., Leikin D. V., “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | MR

[21] Buchstaber V. M., Leykin D. V., “Hyperelliptic addition law”, J. Nonlin. Math. Phys., 12 (2005), 106–123, Suppl. 1 | DOI | MR

[22] Bukhshtaber V. M., Leikin D. V., “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | MR | Zbl

[23] Buchstaber V. M., Perelomov A. M., “On the functional equation related to the quantum three-body problem”, Contemporary mathematical physics, AMS Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 15–34 | MR | Zbl

[24] Calogero F., “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cim., 13:11 (1975), 411–416 | DOI | MR

[25] Calogero F., “On a functional equation connected with integrable many-body problems”, Lett. Nuovo Cim., 16:3 (1976), 77–80 | DOI | MR

[26] Cauchy A. L., Cours d'analyse de l'École Royale Polytechnique. Première partie: Analyse algébrique, Debure, Paris, 1821; Koshi O. L., Kratkoe izlozhenie urokov o differentsialnom i integralnom ischislenii, prepodavaemykh v Korolevskoi politekhnicheskoi shkole, Imp. akad. nauk, SPb., 1831

[27] Clarkson P. A., Olver P. J., “Symmetry and the Chazy equation”, J. Diff. Equat., 124:1 (1996), 225–246 | DOI | MR | Zbl

[28] Clebsch A., Gordan P., Theorie der Abelschen Functionen, Leipzig, 1866

[29] Chebotarev N. G., Teoriya algebraicheskikh funktsii, OGIZ, M., 1948

[30] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[31] Dubrovin B. A., “Geometry of 2D topological field theories”, Integrable systems and quantum groups, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 ; arXiv: hep-th/9407018 | MR | Zbl

[32] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[33] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Dinamicheskie sistemy – 4, Itogi nauki i tekhniki. Sovr. probl. matematiki: Fund. napr., 4, VINITI, M., 1985, 179–285 | MR

[34] Eilbeck J. C., Enolskii V. Z., “Bilinear operators and the power series for the Weierstrass sigma-function”, J. Phys. A.: Math. and Gen., 33 (2000), 791–794 | DOI | MR | Zbl

[35] Eilbeck J. C., Enolskii V. Z., Previato E., “On a generalized Frobenius–Stickelberger addition formula”, Lett. Math. Phys., 63:1 (2003), 5–17 | DOI | MR | Zbl

[36] Fay J., “On the Riemann–Jacobi formula”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 1979, no. 5, 61–73 | MR | Zbl

[37] Fay J., “On the even-order vanishing of Jacobian theta functions”, Duke Math. J., 51:1 (1984), 109–132 | DOI | MR | Zbl

[38] Frobenius F. G., Stickelberger L., “Über die Addition und Multiplication der elliptischen Functionen”, J. Reine und Angew. Math., 88 (1880), 146–184

[39] Frobenius F. G., Stickelberger L., “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine und Angew. Math., 92 (1882), 311–337

[40] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteorizdat, M., L., 1950 | MR

[41] Grammaticos B., Ramani A., Hietarinta J., “Multilinear operators: the natural extension of Hirota's bilinear formalism”, Phys. Lett. A., 190:1 (1994), 65–70 | DOI | MR

[42] Grinevich P. G., Novikov S. P., “Topological charge of the real periodic finite-gap sine-Gordon solutions: Dedicated to the memory of J. K. Moser”, Commun. Pure and Appl. Math., 56:7 (2003), 956–978 ; arXiv: math-ph/0111039 | DOI | MR | Zbl

[43] Hilbert D., “Mathematische Probleme”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1900, 253–297 ; Gilbert D., Izbr. tr. Analiz. Fizika. Problemy. Personalia, T. 2, Faktorial, M., 1998 | Zbl

[44] Hirota R., The direct method in soliton theory, Cambridge Tracts Math., 155, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[45] Klein F., “Über hyperelliptische Sigmafunktionen”, Gesammelte mathematische Abhandlungen, 3, Teubner, Berlin, 1923, 323–387

[46] Krichever I. M., “Algebro-geometricheskaya konstruktsiya uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, DAN SSSR, 227:2 (1976), 291–294 | MR | Zbl

[47] Krichever I. M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl

[48] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[49] Krichever I. M., Novikov S. P., “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl

[50] Krichever I. M., Novikov S. P., “Algebry tipa Virasoro, rimanovy poverkhnosti i struny v prostranstve Minkovskogo”, Funkts. analiz i ego pril., 21:4 (1987), 47–61 | MR | Zbl

[51] Krichever I. M., Novikov S. P., “Virasoro–Gelfand–Fuks type algebras, Riemann surfaces, operator's theory of closed strings”, J. Geom. and Phys., 5:4 (1988), 631–661 | DOI | MR | Zbl

[52] Krichever I. M., Novikov S. P., “Algebry tipa Virasoro, tenzor energii-impulsa i operatornye razlozheniya na rimanovykh poverkhnostyakh”, Funkts. analiz i ego pril., 23:1 (1989), 24–40 | MR | Zbl

[53] Lando S. K., “Razvetvlennye nakrytiya dvumernoi sfery i teoriya peresechenii v prostranstvakh meromorfnykh funktsii na algebraicheskikh krivykh”, UMN, 57:3 (2002), 29–98 | MR | Zbl

[54] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Clarendon Press, New York, 1995 ; Makdonald I. G., Simmetricheskie funktsii i polinomy Kholla, Mir, M., 1985 | MR | Zbl | MR

[55] Milnor J., Singular points of complex hypersurfaces, Princeton Univ. Press, Princeton, NJ, 1968 ; Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl | MR | Zbl

[56] Natanzon S. M., Moduli rimanovykh poverkhnostei, veschestvennykh algebraicheskikh krivykh i ikh superanalogi, MTsNMO, M., 2003, 176 pp. | MR

[57] Novikov S. P., “Periodicheskaya zadacha Kortevega–de Friza”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[58] Novikov S. P., Topologiya, In-t kompyut. issled., Moskva, Izhevsk, 2002, 336 pp.

[59] Novikov S. P., Dynnikov I. A., “Diskretnye spektralnye simmetrii malomernykh differentsialnykh operatorov i raznostnykh operatorov na pravilnykh reshetkakh i dvumernykh mnogoobraziyakh”, UMN, 52:5 (1997), 175–234 | MR | Zbl

[60] Olver P. J., Classical invariant theory, London Math. Soc. Student Texts, 44, Cambridge Univ. Press, Cambridge, 1999 | MR

[61] Ônishi Y., “Determinant expressions for abelian functions in genus two”, Glasgow Math. J., 44:3 (2002), 353–364 | DOI | MR | Zbl

[62] Ônishi Y., “Determinantal expressions for hyperelliptic functions in genus three”, Tokyo J. Math., 27:2 (2004), 299–312 | DOI | MR | Zbl

[63] Ônishi Y., “Determinant expressions for hyperelliptic functions”, Proc. Edinburgh Math. Soc., 48 (2005), 705–742 | DOI | MR | Zbl

[64] Savelev N. N., Lektsii po topologii trekhmernykh mnogoobrazii. Vvedenie v invariant Kassona, In-t kompyut. issled., MTsNMO, M., 2004, 216 pp.

[65] Shiota T., “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83:2 (1986), 333–382 ; Shiota T., “Kharakterizatsiya yakobievykh mnogoobrazii s pomoschyu solitonnykh uravnenii”, Dobavlenie k kn.: Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988, 371–436 | DOI | MR | Zbl | MR

[66] Weierstrass K., “Zur Theorie der elliptischen Funktionen”, Mathematische Werke, 2, Teubner, Berlin, 1894, 245–255

[67] Zakalyukin V. M., “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funkts. analiz i ego pril., 10:2 (1976), 69–70 | MR | Zbl