Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2005_251_a3, author = {V. M. Buchstaber and D. V. Leikin}, title = {Addition {Laws} on {Jacobian} {Varieties} of {Plane} {Algebraic} {Curves}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {54--126}, publisher = {mathdoc}, volume = {251}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2005_251_a3/} }
TY - JOUR AU - V. M. Buchstaber AU - D. V. Leikin TI - Addition Laws on Jacobian Varieties of Plane Algebraic Curves JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2005 SP - 54 EP - 126 VL - 251 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2005_251_a3/ LA - ru ID - TM_2005_251_a3 ER -
V. M. Buchstaber; D. V. Leikin. Addition Laws on Jacobian Varieties of Plane Algebraic Curves. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 54-126. http://geodesic.mathdoc.fr/item/TM_2005_251_a3/
[1] Abel N. H., ØE uvres complètes, 1, J. Gabay, Sceaux, 1992
[2] Adler V. E., Veselov A. P., “Cauchy problem for integrable discrete equations on quad-graphs”, Acta Appl. Math., 84:2 (2004), 237–262 | MR | Zbl
[3] Arbarello E., Cornalba M., Griffiths P. A., Harris J., Geometry of algebraic curves, Springer, New York, 1985 | MR | Zbl
[4] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp. | MR
[5] Aczel J., Dhombres J., Functional equations in several variables, Cambridge Univ. Press, Cambridge, 1989 ; Atsel Ya., Dombr Zh., Funktsionalnye uravneniya s neskolkimi peremennymi, Fizmatlit, M., 2003 | MR | Zbl
[6] Baker H. F., Abelian functions, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[7] Baker H. F., An introduction to the theory of multiply-periodic functions, Cambridge Univ. Press, Cambridge, 1907 | Zbl
[8] Baxter R., Exactly solved models in statistical mechanics, Acad. Press, London, 1982 ; Bakster R., Tochno reshaemye zadachi v statisticheskoi mekhanike, Mir, M., 1985, 488 pp. | MR | Zbl
[9] Bolza O., “The partial differential equations for the hyperelliptic $\theta$- and $\sigma$-functions”, Amer. J. Math., 21 (1899), 107–125 | DOI | MR | Zbl
[10] Bolza O., “Remark concerning expansions of the hyperelliptic $\sigma$-functions”, Amer. J. Math., 22 (1900), 101–112 | DOI | MR | Zbl
[11] Bukhshtaber V. M., Krichever I. M., “Vektornye teoremy slozheniya i funktsii Beikera–Akhiezera”, TMF, 94:2 (1993), 200–212 | MR | Zbl
[12] Buchstaber V. M., Krichever I. M., “Multidimesional vector addition theorems and the Riemann theta functions”, Intern. Math. Res. Not., 1996, no. 10, 505–513 | DOI | MR | Zbl
[13] Bukhshtaber V. M., Krichever I. M., “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1 (2006), 25–84 | MR | Zbl
[14] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Hyperelliptic Kleinian functions and applications”, Solitons, geometry and topology: On the crossroad, AMS Transl. Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, Amer. Math. Soc., Providence, RI, 1997, 1–34 | MR
[15] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. and Math. Phys., 10:2 (1977), 3–120
[16] Bukhshtaber V. M., Leikin D. V., Enolskii V. Z., “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | MR | Zbl
[17] Bukhshtaber V. M., Leikin D. V., “Algebry Li, assotsiirovannye s $\sigma$-funktsiyami, i versalnye deformatsii”, UMN, 57:3 (2002), 145–146 | MR | Zbl
[18] Bukhshtaber V. M., Leikin D. V., “Graduirovannye algebry Li, zadayuschie giperellipticheskie $\sigma$-funktsii”, DAN, 385:5 (2002), 583–586 | MR | Zbl
[19] Bukhshtaber V. M., Leikin D. V., “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | MR | Zbl
[20] Bukhshtaber V. M., Leikin D. V., “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | MR
[21] Buchstaber V. M., Leykin D. V., “Hyperelliptic addition law”, J. Nonlin. Math. Phys., 12 (2005), 106–123, Suppl. 1 | DOI | MR
[22] Bukhshtaber V. M., Leikin D. V., “Trilineinye funktsionalnye uravneniya”, UMN, 60:2 (2005), 151–152 | MR | Zbl
[23] Buchstaber V. M., Perelomov A. M., “On the functional equation related to the quantum three-body problem”, Contemporary mathematical physics, AMS Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 15–34 | MR | Zbl
[24] Calogero F., “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cim., 13:11 (1975), 411–416 | DOI | MR
[25] Calogero F., “On a functional equation connected with integrable many-body problems”, Lett. Nuovo Cim., 16:3 (1976), 77–80 | DOI | MR
[26] Cauchy A. L., Cours d'analyse de l'École Royale Polytechnique. Première partie: Analyse algébrique, Debure, Paris, 1821; Koshi O. L., Kratkoe izlozhenie urokov o differentsialnom i integralnom ischislenii, prepodavaemykh v Korolevskoi politekhnicheskoi shkole, Imp. akad. nauk, SPb., 1831
[27] Clarkson P. A., Olver P. J., “Symmetry and the Chazy equation”, J. Diff. Equat., 124:1 (1996), 225–246 | DOI | MR | Zbl
[28] Clebsch A., Gordan P., Theorie der Abelschen Functionen, Leipzig, 1866
[29] Chebotarev N. G., Teoriya algebraicheskikh funktsii, OGIZ, M., 1948
[30] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl
[31] Dubrovin B. A., “Geometry of 2D topological field theories”, Integrable systems and quantum groups, Lect. Notes Math., 1620, Springer, Berlin, 1996, 120–348 ; arXiv: hep-th/9407018 | MR | Zbl
[32] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[33] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy, I”, Dinamicheskie sistemy – 4, Itogi nauki i tekhniki. Sovr. probl. matematiki: Fund. napr., 4, VINITI, M., 1985, 179–285 | MR
[34] Eilbeck J. C., Enolskii V. Z., “Bilinear operators and the power series for the Weierstrass sigma-function”, J. Phys. A.: Math. and Gen., 33 (2000), 791–794 | DOI | MR | Zbl
[35] Eilbeck J. C., Enolskii V. Z., Previato E., “On a generalized Frobenius–Stickelberger addition formula”, Lett. Math. Phys., 63:1 (2003), 5–17 | DOI | MR | Zbl
[36] Fay J., “On the Riemann–Jacobi formula”, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 1979, no. 5, 61–73 | MR | Zbl
[37] Fay J., “On the even-order vanishing of Jacobian theta functions”, Duke Math. J., 51:1 (1984), 109–132 | DOI | MR | Zbl
[38] Frobenius F. G., Stickelberger L., “Über die Addition und Multiplication der elliptischen Functionen”, J. Reine und Angew. Math., 88 (1880), 146–184
[39] Frobenius F. G., Stickelberger L., “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine und Angew. Math., 92 (1882), 311–337
[40] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteorizdat, M., L., 1950 | MR
[41] Grammaticos B., Ramani A., Hietarinta J., “Multilinear operators: the natural extension of Hirota's bilinear formalism”, Phys. Lett. A., 190:1 (1994), 65–70 | DOI | MR
[42] Grinevich P. G., Novikov S. P., “Topological charge of the real periodic finite-gap sine-Gordon solutions: Dedicated to the memory of J. K. Moser”, Commun. Pure and Appl. Math., 56:7 (2003), 956–978 ; arXiv: math-ph/0111039 | DOI | MR | Zbl
[43] Hilbert D., “Mathematische Probleme”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1900, 253–297 ; Gilbert D., Izbr. tr. Analiz. Fizika. Problemy. Personalia, T. 2, Faktorial, M., 1998 | Zbl
[44] Hirota R., The direct method in soliton theory, Cambridge Tracts Math., 155, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[45] Klein F., “Über hyperelliptische Sigmafunktionen”, Gesammelte mathematische Abhandlungen, 3, Teubner, Berlin, 1923, 323–387
[46] Krichever I. M., “Algebro-geometricheskaya konstruktsiya uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, DAN SSSR, 227:2 (1976), 291–294 | MR | Zbl
[47] Krichever I. M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funkts. analiz i ego pril., 11:1 (1977), 15–31 | MR | Zbl
[48] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl
[49] Krichever I. M., Novikov S. P., “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl
[50] Krichever I. M., Novikov S. P., “Algebry tipa Virasoro, rimanovy poverkhnosti i struny v prostranstve Minkovskogo”, Funkts. analiz i ego pril., 21:4 (1987), 47–61 | MR | Zbl
[51] Krichever I. M., Novikov S. P., “Virasoro–Gelfand–Fuks type algebras, Riemann surfaces, operator's theory of closed strings”, J. Geom. and Phys., 5:4 (1988), 631–661 | DOI | MR | Zbl
[52] Krichever I. M., Novikov S. P., “Algebry tipa Virasoro, tenzor energii-impulsa i operatornye razlozheniya na rimanovykh poverkhnostyakh”, Funkts. analiz i ego pril., 23:1 (1989), 24–40 | MR | Zbl
[53] Lando S. K., “Razvetvlennye nakrytiya dvumernoi sfery i teoriya peresechenii v prostranstvakh meromorfnykh funktsii na algebraicheskikh krivykh”, UMN, 57:3 (2002), 29–98 | MR | Zbl
[54] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Clarendon Press, New York, 1995 ; Makdonald I. G., Simmetricheskie funktsii i polinomy Kholla, Mir, M., 1985 | MR | Zbl | MR
[55] Milnor J., Singular points of complex hypersurfaces, Princeton Univ. Press, Princeton, NJ, 1968 ; Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl | MR | Zbl
[56] Natanzon S. M., Moduli rimanovykh poverkhnostei, veschestvennykh algebraicheskikh krivykh i ikh superanalogi, MTsNMO, M., 2003, 176 pp. | MR
[57] Novikov S. P., “Periodicheskaya zadacha Kortevega–de Friza”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl
[58] Novikov S. P., Topologiya, In-t kompyut. issled., Moskva, Izhevsk, 2002, 336 pp.
[59] Novikov S. P., Dynnikov I. A., “Diskretnye spektralnye simmetrii malomernykh differentsialnykh operatorov i raznostnykh operatorov na pravilnykh reshetkakh i dvumernykh mnogoobraziyakh”, UMN, 52:5 (1997), 175–234 | MR | Zbl
[60] Olver P. J., Classical invariant theory, London Math. Soc. Student Texts, 44, Cambridge Univ. Press, Cambridge, 1999 | MR
[61] Ônishi Y., “Determinant expressions for abelian functions in genus two”, Glasgow Math. J., 44:3 (2002), 353–364 | DOI | MR | Zbl
[62] Ônishi Y., “Determinantal expressions for hyperelliptic functions in genus three”, Tokyo J. Math., 27:2 (2004), 299–312 | DOI | MR | Zbl
[63] Ônishi Y., “Determinant expressions for hyperelliptic functions”, Proc. Edinburgh Math. Soc., 48 (2005), 705–742 | DOI | MR | Zbl
[64] Savelev N. N., Lektsii po topologii trekhmernykh mnogoobrazii. Vvedenie v invariant Kassona, In-t kompyut. issled., MTsNMO, M., 2004, 216 pp.
[65] Shiota T., “Characterization of Jacobian varieties in terms of soliton equations”, Invent. Math., 83:2 (1986), 333–382 ; Shiota T., “Kharakterizatsiya yakobievykh mnogoobrazii s pomoschyu solitonnykh uravnenii”, Dobavlenie k kn.: Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988, 371–436 | DOI | MR | Zbl | MR
[66] Weierstrass K., “Zur Theorie der elliptischen Funktionen”, Mathematische Werke, 2, Teubner, Berlin, 1894, 245–255
[67] Zakalyukin V. M., “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funkts. analiz i ego pril., 10:2 (1976), 69–70 | MR | Zbl