Complex Geometry of Matrix Models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 265-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains some new results and a review of recent achievements concerning multisupport solutions to matrix models. In the leading order of the 't Hooft expansion for matrix integral, these solutions are described by semiclassical, or generalized Whitham, hierarchies and are directly related to the superpotentials of four-dimensional ${\mathcal N}=1$ SUSY gauge theories. We study the derivatives of tau-functions for these solutions associated with families of Riemann surfaces (with possible double points) and find that they satisfy the Witten–Dijkgraaf–Verlinde–Verlinde equations. We also find the free energy in the subleading order in the matrix size and prove that it satisfies certain determinant relations.
@article{TM_2005_251_a12,
     author = {L. O. Chekhov and A. V. Marshakov and A. D. Mironov and D. Vasiliev},
     title = {Complex {Geometry} of {Matrix} {Models}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {265--306},
     publisher = {mathdoc},
     volume = {251},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_251_a12/}
}
TY  - JOUR
AU  - L. O. Chekhov
AU  - A. V. Marshakov
AU  - A. D. Mironov
AU  - D. Vasiliev
TI  - Complex Geometry of Matrix Models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 265
EP  - 306
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_251_a12/
LA  - ru
ID  - TM_2005_251_a12
ER  - 
%0 Journal Article
%A L. O. Chekhov
%A A. V. Marshakov
%A A. D. Mironov
%A D. Vasiliev
%T Complex Geometry of Matrix Models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 265-306
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_251_a12/
%G ru
%F TM_2005_251_a12
L. O. Chekhov; A. V. Marshakov; A. D. Mironov; D. Vasiliev. Complex Geometry of Matrix Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 265-306. http://geodesic.mathdoc.fr/item/TM_2005_251_a12/

[1] Cachazo F., Intriligator K. A., Vafa C., “A large $N$ duality via a geometric transition”, Nucl. Phys. B., 603 (2001), 3–41 ; arXiv: /hep-th/0103067 | DOI | MR | Zbl

[2] Cachazo F., Vafa C., $N=1$ and $N=2$ geometry from fluxes, , 2002 arXiv: /hep-th/0206017

[3] Dijkgraaf R., Vafa C., “Matrix models, topological strings, and supersymmetric gauge theories”, Nucl. Phys. B., 644 (2002), 3–20 ; arXiv: /hep-th/0206255 | DOI | MR | Zbl

[4] Dijkgraaf R., Vafa C., “On geometry and matrix models”, Nucl. Phys. B., 644 (2002), 21–39 ; arXiv: /hep-th/0207106 | DOI | MR | Zbl

[5] Dijkgraaf R., Vafa C., A perturbative window into non-perturbative physics, , 2002 arXiv: /hep-th/0208048

[6] Demeterfi K., Deo N., Jain S., Tan C.-I., “Multiband structure and critical behavior of matrix models”, Phys. Rev. D., 42 (1990), 4105–4122 | DOI

[7] Jurkiewicz J., “Regularization of one-matrix models”, Phys. Lett. B., 245 (1990), 178–184 | DOI | MR | Zbl

[8] Crnković C., Moore G., “Multicritical multi-cut matrix models”, Phys. Lett. B., 257 (1991), 322–328 | DOI | MR

[9] Ambjørn J., Akemann G., “New universal spectral correlators”, J. Phys. A: Math. and Gen., 29 (1996), L555–L560 ; arXiv: cond-mat/9606129 | DOI | MR | Zbl

[10] Bonnet G., David F., Eynard B., “Breakdown of universality in multi-cut matrix models”, J. Phys. A.: Math. and Gen., 33 (2000), 6739–6768 ; arXiv: cond-mat/0003324 | DOI | MR | Zbl

[11] Seiberg N., Witten E., “Electric–magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nucl. Phys. B., 426 (1994), 19–52 ; arXiv: /hep-th/9407087 | DOI | MR | Zbl

[12] Seiberg N., Witten E., “Monopoles, duality and chiral symmetry breaking in $N=2$ supersymmetric QCD”, Nucl. Phys. B., 431 (1994), 484–550 ; arXiv: /hep-th/9408099 | DOI | MR | Zbl

[13] Krichever I. M., “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Commun. Pure and Appl. Math., 47:4 (1992), 437–475 ; arXiv: /hep-th/9205110 | DOI | MR

[14] Gorsky A., Marshakov A., Mironov A., Morozov A., “RG equations from Whitham hierarchy”, Nucl. Phys. B., 527 (1998), 690–716 ; arXiv: /hep-th/9802007 | DOI | MR | Zbl

[15] Marshakov A., Mironov A., Seiberg–Witten systems and Whitham hierarchies: A short review, , 1998 arXiv: /hep-th/9809196

[16] Marshakov A., Seiberg–Witten theory and integrable systems, World Sci., Singapore, 1999, 253 pp. | MR | Zbl

[17] H. W. Braden, I. M. Krichever (eds.), Integrability: The Seiberg–Witten and Whitham equations, Gordon and Breach Sci. Publ., Amsterdam, 2000, ix+276 pp. | MR | Zbl

[18] Gorsky A., Mironov A., “Integrable many-body systems and gauge theories”, Integrable hierarchies and modern physical theories:, Proc. NATO advanced research Workshop (Chicago, July 22–26, 2000), NATO Sci. Ser. 2: Math. Phys. Chem., 18, eds. H. Aratyn et al., Kluwer, Dordrecht, 2001, 33–176 ; arXiv: /hep-th/0011197 | MR | Zbl

[19] Chekhov L., Mironov A., “Matrix models vs. Seiberg–Witten/Whitham theories”, Phys. Lett. B., 552 (2003), 293–302 ; arXiv: /hep-th/0209085 | DOI | MR | Zbl

[20] Kazakov V. A., Marshakov A., “Complex curve of the two-matrix model and its tau-function”, J. Phys. A.: Math. and Gen., 36 (2003), 3107–3136 ; arXiv: /hep-th/0211236 | DOI | MR | Zbl

[21] Gerasimov A., Marshakov A., Mironov A., Morozov A., Orlov A., “Matrix models of two-dimensional gravity and Toda theory”, Nucl. Phys. B., 357 (1991), 565–618 | DOI | MR

[22] Kharchev S., Marshakov A., Mironov A., Orlov A., Zabrodin A., “Matrix models among integrable theories: forced hierarchies and operator formalism”, Nucl. Phys. B., 366 (1991), 569–601 | DOI | MR

[23] Marshakov A., “Integrable structures in matrix models and physics of 2D gravity”, Intern. J. Mod. Phys. A., 8 (1993), 3831–3882 ; arXiv: /hep-th/9303101 | DOI | MR | Zbl

[24] Mironov A., “2D gravity and matrix models. I: 2D gravity”, Intern. J. Mod. Phys. A., 9 (1994), 4355–4406 ; arXiv: /hep-th/9312212 | DOI | MR

[25] Mironov A. D., “Matrichnye modeli dvumernoi gravitatsii”, EChAYa, 33 (2002), 1051–1145

[26] Morozov A. Yu., “Integriruemost i matrichnye modeli”, UFN, 164:1 (1994), 3–62 ; arXiv: /hep-th/9303139 | DOI

[27] Morozov A., Matrix models as integrable systems, , 1995 arXiv: /hep-th/9502091 | MR

[28] Migdal A. A., “Loop equations and $1/N$ expansion”, Phys. Rept., 102 (1983), 199–290 | DOI

[29] Ambjørn J., Jurkiewicz J., Makeenko Yu. M., “Multiloop correlators for two-dimensional quantum gravity”, Phys. Lett. B., 251 (1990), 517–524 | DOI | MR

[30] Makeenko Yu., “Loop equations in matrix models and in 2D quantum gravity”, Mod. Phys. Lett. A., 6 (1991), 1901–1913 | DOI | MR | Zbl

[31] David F., “Loop equations and nonperturbative effects in two-dimensional quantum gravity”, Mod. Phys. Lett. A., 5 (1990), 1019–1030 | DOI | MR

[32] Mironov A., Morozov A., “On the origin of Virasoro constraints in matrix models: Lagrangian approach”, Phys. Lett. B., 252 (1990), 47–52 | DOI | MR

[33] Ambjørn J., Makeenko Yu. M., “Properties of loop equations for the Hermitean matrix model and for two-dimensional quantum gravity”, Mod. Phys. Lett. A., 5 (1990), 1753–1763 | DOI | MR | Zbl

[34] Itoyama H., Matsuo Y., “Noncritical Virasoro algebra of $D1$ matrix model and quantized string field”, Phys. Lett. B., 255 (1991), 202–208 | DOI | MR

[35] Alexandrov A., Mironov A., Morozov A., “Partition functions of matrix models: first special functions of string theory”, Intern. J. Mod. Phys. A., 19 (2004), 4127–4165 ; arXiv: /hep-th/0310113 | DOI | MR

[36] Alexandrov A., Mironov A., Morozov A., Unified description of correlators in non-Gaussian phases of Hermitean matrix model, , 2004 arXiv: /hep-th/0412099

[37] Alexandrov A., Mironov A., Morozov A., “Solving Virasoro constraints in matrix models”, Fortschr. Phys., 53 (2005), 512–521 ; arXiv: /hep-th/0412205 | DOI | MR | Zbl

[38] Klemm A., Marino M., Theisen S., “Gravitational corrections in supersymmetric gauge theory and matrix models”, J. High Energy Phys., 2003, no. 03, Pap. 051 ; arXiv: /hep-th/0211216 | MR

[39] Witten E., “On the structure of the topological phase of two-dimensional gravity”, Nucl. Phys. B., 340 (1990), 281–332 | DOI | MR

[40] Dijkgraaf R., Verlinde H. L., Verlinde E. P., “Topological strings in $d1$”, Nucl. Phys. B., 352 (1991), 59–86 | DOI | MR

[41] Marshakov A., Mironov A., Morozov A., “WDVV-like equations in $N=2$ SUSY Yang–Mills theory”, Phys. Lett. B., 389 (1996), 43–52 ; arXiv: /hep-th/9607109 | DOI | MR

[42] Marshakov A., Mironov A., Morozov A., “WDVV equations from algebra of forms”, Mod. Phys. Lett. A., 12 (1997), 773–788 ; arXiv: /hep-th/9701014 | DOI | MR

[43] Marshakov A., Mironov A., Morozov A., “More evidence for the WDVV equations in $N=2$ SUSY Yang–Mills theories”, Intern. J. Mod. Phys. A., 15 (2000), 1157–1206 ; arXiv: /hep-th/9701123 | MR | Zbl

[44] Mironov A., “WDVV equations and Seiberg–Witten theory”, Integrability: The Seiberg–Witten and Whitham equations, eds. H. W. Braden, I. M. Krichever, Gordon and Breach Sci. Publ., Amsterdam, 2000, 103–123 ; arXiv: /hep-th/9903088 | MR | Zbl

[45] Marshakov A., Associativity equations in effective SUSY quantum field theories, , 2001 arXiv: /hep-th/0108023

[46] Marshakov A. V., “Ob uravneniyakh assotsiativnosti”, TMF, 132:1 (2002), 3–49 ; arXiv: /hep-th/0201267 | MR | Zbl

[47] Chekhov L., Marshakov A., Mironov A., Vasiliev D., “DV and WDVV”, Phys. Lett. B., 562 (2003), 323–338 ; arXiv: /hep-th/0301071 | DOI | MR | Zbl

[48] Eynard B., “Topological expansion for the 1-hermitian matrix model correlation functions”, J. High Energy Phys., 2004, no. 11, Pap. 031 ; arXiv: /hep-th/0407261 | MR | Zbl

[49] Mironov A., Morozov A., Semenoff G. W., “Unitary matrix integrals in the framework of generalized Kontsevich model”, Intern. J. Mod. Phys. A., 11 (1996), 5031–5080 ; arXiv: /hep-th/9404005 | DOI | MR | Zbl

[50] Akemann G., “Higher genus correlators for the Hermitian matrix model with multiple cuts”, Nucl. Phys. B., 482 (1996), 403–430 ; arXiv: /hep-th/9606004 | DOI | MR | Zbl

[51] Ambjørn J., Chekhov L., Kristjansen C. F., Makeenko Yu., “Matrix model calculations beyond the spherical limit”, Nucl. Phys. B., 404 (1993), 127–172 ; arXiv: /hep-th/9302014 | DOI | MR

[52] Mehta M. L., Random matrices, 3rd ed., Pure and Appl. Math., 142, Elsevier, Amsterdam, 2004, xviii+688 pp. | MR | Zbl

[53] de Vit B., Marshakov A. V., “Elektromagnitnaya dualnost i uravneniya Vittena–Diikgraafa–Verlinde–Verlinde”, TMF, 129:2 (2001), 230–238 ; arXiv: /hep-th/0105289 | MR

[54] Braden H. W., Marshakov A., “Singular phases of Seiberg–Witten integrable systems: Weak and strong coupling”, Nucl. Phys. B., 595 (2001), 417–466 ; arXiv: /hep-th/0009060 | DOI | MR | Zbl

[55] Gorsky A., Krichever I., Marshakov A., Mironov A., Morozov A., “Integrability and Seiberg–Witten exact solution”, Phys. Lett. B., 355 (1995), 466–474 ; arXiv: /hep-th/9505035 | DOI | MR | Zbl

[56] Itoyama H., Morozov A., “Integrability and Seiberg–Witten theory: Curves and periods”, Nucl. Phys. B., 477 (1996), 855–877 ; arXiv: /hep-th/9511126 | DOI | MR | Zbl

[57] Losev A., Nekrasov N., Shatashvili S. L., “Issues in topological gauge theory”, Nucl. Phys. B., 534 (1998), 549–611 ; arXiv: /hep-th/9711108 | DOI | MR | Zbl

[58] Chekhov L., Makeenko Yu., “The multicritical Kontsevich–Penner model”, Mod. Phys. Lett. A., 7 (1992), 1223–1236 ; arXiv: /hep-th/9201033 | DOI | MR | Zbl

[59] Fay J. D., Theta functions on Riemann surfaces, Lect. Notes Math., 352, Springer, Berlin, Heidelberg, New York, 1973, 137 pp. | MR | Zbl

[60] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B., 241 (1984), 333–380 | DOI | MR | Zbl

[61] Knizhnik V. G., “Analytic fields on Riemannian surfaces”, Phys. Lett. B., 180 (1986), 247–254 | DOI | MR | Zbl

[62] Knizhnik V. G., “Analytic fields on Riemann surfaces, 2”, Commun. Math. Phys., 112 (1987), 567–590 | DOI | MR | Zbl

[63] Knizhnik V. G., “Mnogopetlevye amplitudy v teorii kvantovykh strun i kompleksnaya geometriya”, UFN, 159 (1989), 401–453 | MR

[64] Lebedev D., Morozov A., “Statistical sums of strings on hyperelliptic surfaces”, Nucl. Phys. B., 302 (1988), 163–188 | DOI | MR

[65] Morozov A., “Two-loop statsum of superstring”, Nucl. Phys. B., 303 (1988), 343–372 | DOI | MR

[66] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[67] Kazakov V. A., Marshakov A., Minahan J. A., Zarembo K., “Classical/quantum integrability in AdS/CFT”, J. High Energy Phys., 2004, no. 5, 024, 55 pp. (electronic) ; arXiv: /hep-th/0402207 | MR

[68] Marshakov A. V., “Kvaziklassicheskaya geometriya i integriruemost AdS/KTP sootvetstviya”, TMF, 142:2 (2005), 265–283 ; arXiv: /hep-th/0406056 | MR | Zbl

[69] Hoevenaars L. K., Kersten P. H. M., Martini R., “Generalized WDVV equations for $F(4)$ pure $N=2$ super-Yang–Mills theory”, Phys. Lett. B., 503 (2001), 189–196 ; arXiv: /hep-th/0012133 | DOI | MR | Zbl

[70] Hoevenaars L. K., Martini R., “Generalized WDVV equations for $B(r)$ and $C(r)$ pure $N=2$ super-Yang–Mills theory”, Lett. Math. Phys., 57 (2001), 175–183 ; arXiv: /hep-th/0102190 | DOI | MR | Zbl

[71] Boyarsky A., Marshakov A., Ruchayskiy O., Wiegmann P., Zabrodin A., “On associativity equations in dispersionless integrable hierarchies”, Phys. Lett. B., 515 (2001), 483–492 ; arXiv: /hep-th/0105260 | DOI | MR | Zbl

[72] Kostov I. K., Conformal field theory techniques in random matrix models, , 1999 arXiv: /hep-th/9907060

[73] Dijkgraaf R., Sinkovics A., Temurhan M., “Matrix models and gravitational corrections”, Adv. Theor. and Math. Phys., 7 (2004), 1155–1176 ; arXiv: /hep-th/0211241 | MR

[74] Zamolodchikov A. B., “Conformal scalar field on the hyperelliptic curve and critical Ashkin–Teller multipoint correlation functions”, Nucl. Phys. B., 285 (1987), 481–503 | DOI | MR

[75] Moore G. W., “Matrix models of 2D gravity and isomonodromic deformation”, Progr. Theor. Phys. Suppl., 1990, no. 102, 255–286 | DOI | MR

[76] Chekhov L. O., “Popravki roda odin k mnogorazreznym resheniyam matrichnoi modeli”, TMF, 141:3 (2004), 358–374 ; arXiv: /hep-th/0401089 | MR

[77] Dijkgraaf R., Witten E., “Mean field theory, topological field theory, and multi-matrix models”, Nucl. Phys. B., 342 (1990), 486–522 | DOI | MR

[78] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surv. Diff. Geom., 1 (1991), 243–310 | MR

[79] David F., “Nonperturbative effects in matrix models and vacua of two-dimensional gravity”, Phys. Lett. B., 302 (1993), 403–410 ; arXiv: /hep-th/9212106 | DOI | MR

[80] Lechtenfeld O., “On eigenvalue tunneling in matrix models”, Intern. J. Mod. Phys. A., 7 (1992), 2335–2354 | DOI | MR | Zbl

[81] Kharchev S., Marshakov A., Mironov A., Morozov A., “Generalized Kontsevich model versus Toda hierarchy and discrete matrix models”, Nucl. Phys. B., 397 (1993), 339–378 ; arXiv: /hep-th/9203043 | DOI | MR

[82] Barnes E. W., “The theory of the double gamma function”, Philos. Trans. Roy. Soc. A., 196 (1901), 265–387 | DOI | Zbl

[83] Whittaker E. T., Watson G. N., A course of modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, 4th ed., Cambridge Univ. Press, Cambridge, 1927, vi+608 pp. | MR

[84] Jimbo M., Miwa T., “QKZ equation with $|q|=1$ and correlation functions of the $XXZ$ model in the gapless regime”, J. Phys. A.: Math. and Gen., 29 (1996), 2923–2958 ; arXiv: /hep-th/9601135 | DOI | MR | Zbl

[85] Chekhov L., Eynard B., Hermitean matrix model free energy: Feynman graph technique for all genera, , 2005 arXiv: /hep-th/0504116 | MR

[86] Vasiliev D., “Determinant formulas for matrix model free energy”, Pisma v ZhETF, 82:3 (2005), 115–118 ; arXiv: /hep-th/0506155 | MR