On Scalar Products in the Algebraic Bethe Ansatz
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 257-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

Scalar products in the algebraic Bethe ansatz are considered. An explicit determinant representation is derived for the scalar product of the eigenvectors of a twisted transfer matrix by arbitrary Bethe vectors.
@article{TM_2005_251_a11,
     author = {N. A. Slavnov},
     title = {On {Scalar} {Products} in the {Algebraic} {Bethe} {Ansatz}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {257--264},
     publisher = {mathdoc},
     volume = {251},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_251_a11/}
}
TY  - JOUR
AU  - N. A. Slavnov
TI  - On Scalar Products in the Algebraic Bethe Ansatz
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 257
EP  - 264
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_251_a11/
LA  - ru
ID  - TM_2005_251_a11
ER  - 
%0 Journal Article
%A N. A. Slavnov
%T On Scalar Products in the Algebraic Bethe Ansatz
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 257-264
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_251_a11/
%G ru
%F TM_2005_251_a11
N. A. Slavnov. On Scalar Products in the Algebraic Bethe Ansatz. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Nonlinear dynamics, Tome 251 (2005), pp. 257-264. http://geodesic.mathdoc.fr/item/TM_2005_251_a11/

[1] Sklyanin E. K., Takhtadzhyan L. A., Faddeev L. D., “Kvantovyi metod obratnoi zadachi”, TMF, 40 (1979), 194–220 | MR

[2] Slavnov N. A., “Vychislenie skalyarnykh proizvedenii volnovykh funktsii i formfaktorov v algebraicheskom anzatse Bete”, TMF, 79 (1989), 232–240 | MR

[3] Slavnov N. A., “Ob odnom tozhdestve dlya dualnykh polei”, Zap. nauch. sem. POMI, 245, 1997, 270–281 | MR | Zbl

[4] Kitanine N., Maillet J. M., Terras V., “Form factors of the $XXZ$ Heisenberg spin-$\frac12$ finite chain”, Nucl. Phys. B., 554 (1999), 647–678 ; arXiv: math-ph/9807020 | DOI | MR | Zbl

[5] Kitanine N., Maillet J. M., Slavnov N. A., Terras V., “Master equation for spin–spin correlation functions of the $XXZ$ chain”, Nucl. Phys. B., 712 (2005), 600–622 ; arXiv: hep-th/0406190 | DOI | MR | Zbl

[6] Kitanine N., Maillet J. M., Slavnov N. A., Terras V., Dynamical correlation functions of the $XXZ$ spin-$1/2$ chain, , 2004 arXiv: hep-th/0407108 | MR

[7] Izergin A. G., Korepin V. E., “The quantum inverse scattering method approach to correlation functions”, Commun. Math. Phys., 94 (1984), 67–92 | DOI | MR | Zbl

[8] Izergin A. G., “Statsumma shestivershinnoi modeli v konechnom ob'eme”, DAN SSSR, 297:2 (1987), 331–333 | MR | Zbl

[9] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[10] Kitanine N., Maillet J. M., Slavnov N. A., Terras V., “Spin–spin correlation functions of the $XXZ$-$\frac 12$ Heisenberg chain in a magnetic field”, Nucl. Phys. B., 641 (2002), 487–518 ; arXiv: hep-th/0201045 | DOI | MR | Zbl