Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2005_250_a10, author = {E. V. Radkevich}, title = {Kinetic {Equations} and the {Chapman--Enskog} {Projection} {Problem}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {219--225}, publisher = {mathdoc}, volume = {250}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a10/} }
E. V. Radkevich. Kinetic Equations and the Chapman--Enskog Projection Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 219-225. http://geodesic.mathdoc.fr/item/TM_2005_250_a10/
[1] Müller I., Ruggeri T., Extended thermodynamics, Springer, New York, 1993 | MR
[2] Levermore C. D., “Moment closure hierarchies for kinetic theories”, J. Stat. Phys., 83 (1996), 1021–1065 | DOI | MR | Zbl
[3] Chapman S., Cowling T., Mathematical theory on non-uniform gases. 3rd ed., Cambridge Univ. Press, Cambridge, 1970 | MR
[4] Peierls R., “Zur kinetischen Theorie der Warmeleitung in Kristallen”, Ann. Phys., 3 (1929), 1055–1096 | DOI
[5] Dreyer W., Struchtrup H., “Heat pulse experiments revisted”, Continuum Mech. and Thermodyn., 5 (1993), 3–50 | DOI | MR
[6] Radkevich E. V., “Korrektnost matematicheskikh modelei mekhaniki sploshnykh sred i termodinamika”, Sovr. matematika. Fund. napr., 3 (2003), 5–32 | MR | Zbl
[7] Zakharchenko P. A., Radkevich E. V., “O svoistvakh predstavleniya uravneniya Fokkera–Planka v bazise funktsii Ermita”, DAN, 395:1 (2004), 36–39 | MR | Zbl
[8] Volevich L. R., Radkevich E. V., “Ustoichivye puchki giperbolicheskikh polinomov i zadacha Koshi dlya giperbolicheskikh uravnenii s malym parametrom pri starshikh proizvodnykh”, Tr. Mosk. mat. o-va, 65, 2004, 69–113 | MR | Zbl
[9] Struchtrup H., Weiss W., “Temperature jump and velocity slip in the moment method”, Continuum Mech. and Thermodyn., 12 (2000), 1–18 | DOI | MR | Zbl