Kinetic Equations and the Chapman--Enskog Projection Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 219-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that in the low-frequency cutoffs of the Chapman–Enskog projection of moment approximations of the Boltzmann kinetic equation, the so-called ultraviolet catastrophe occurs. For the first time, this phenomenon was pointed out by A. V. Bobylev in 1992 in the simplest mode (of one-dimensional linear deviation from global equilibrium). By an example of moment approximation of the Boltzmann–Peierls kinetic equation, we prove the existence of a Chapman–Enskog projection to the phase space of the conservative variable in the class of first-order hyperbolic pseudodifferential systems with relaxation. This result is used to explain the phenomenon of ultraviolet catastrophe.
@article{TM_2005_250_a10,
     author = {E. V. Radkevich},
     title = {Kinetic {Equations} and the {Chapman--Enskog} {Projection} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {219--225},
     publisher = {mathdoc},
     volume = {250},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_250_a10/}
}
TY  - JOUR
AU  - E. V. Radkevich
TI  - Kinetic Equations and the Chapman--Enskog Projection Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 219
EP  - 225
VL  - 250
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_250_a10/
LA  - ru
ID  - TM_2005_250_a10
ER  - 
%0 Journal Article
%A E. V. Radkevich
%T Kinetic Equations and the Chapman--Enskog Projection Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 219-225
%V 250
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_250_a10/
%G ru
%F TM_2005_250_a10
E. V. Radkevich. Kinetic Equations and the Chapman--Enskog Projection Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 250 (2005), pp. 219-225. http://geodesic.mathdoc.fr/item/TM_2005_250_a10/

[1] Müller I., Ruggeri T., Extended thermodynamics, Springer, New York, 1993 | MR

[2] Levermore C. D., “Moment closure hierarchies for kinetic theories”, J. Stat. Phys., 83 (1996), 1021–1065 | DOI | MR | Zbl

[3] Chapman S., Cowling T., Mathematical theory on non-uniform gases. 3rd ed., Cambridge Univ. Press, Cambridge, 1970 | MR

[4] Peierls R., “Zur kinetischen Theorie der Warmeleitung in Kristallen”, Ann. Phys., 3 (1929), 1055–1096 | DOI

[5] Dreyer W., Struchtrup H., “Heat pulse experiments revisted”, Continuum Mech. and Thermodyn., 5 (1993), 3–50 | DOI | MR

[6] Radkevich E. V., “Korrektnost matematicheskikh modelei mekhaniki sploshnykh sred i termodinamika”, Sovr. matematika. Fund. napr., 3 (2003), 5–32 | MR | Zbl

[7] Zakharchenko P. A., Radkevich E. V., “O svoistvakh predstavleniya uravneniya Fokkera–Planka v bazise funktsii Ermita”, DAN, 395:1 (2004), 36–39 | MR | Zbl

[8] Volevich L. R., Radkevich E. V., “Ustoichivye puchki giperbolicheskikh polinomov i zadacha Koshi dlya giperbolicheskikh uravnenii s malym parametrom pri starshikh proizvodnykh”, Tr. Mosk. mat. o-va, 65, 2004, 69–113 | MR | Zbl

[9] Struchtrup H., Weiss W., “Temperature jump and velocity slip in the moment method”, Continuum Mech. and Thermodyn., 12 (2000), 1–18 | DOI | MR | Zbl